Abstract
Intramolecular metal-ligand OH/π (MLOH/π) and metal-ligand NH/π (MLNH/π) interactions in transition metal complexes between aqua or ammine ligand and ligand containing a C6-aromatic ring were investigated in crystal structures deposited in the Cambridge Structural Database (CSD). These intramolecular interactions appear in 38 structures with aqua ligand as the hydrogen atom donor and in 10 structures with ammine ligand as the hydrogen atom donor. Among all these complexes only one is negatively charged, 14 are positively charged and 33 are neutral indicating that the overall charge of the molecule has an influence on the XH/π (X = O or N) interactions. Energy estimated by DFT calculations is approximately 19 kJ mol−1 for the MLOH/π interactions and approximately 15 kJ mol−1 for the MLNH/π interactions.
[1] Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica, Section B, 58, 380–388. DOI: 10.1107/S0108768102003890. http://dx.doi.org/10.1107/S010876810200389010.1107/S0108768102003890Suche in Google Scholar
[2] Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M., & Watson, D. G. (1991). The development of versions 3 and 4 of the Cambridge Structural Database System. Journal of Chemical Information and Computer Sciences, 31, 187–204. DOI: 10.1021/ci00002a004. 10.1021/ci00002a004Suche in Google Scholar
[3] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Guy Orpen, A., & Taylor, R. (1987). Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, S1–S19. DOI: 10.1039/P298700000S1. 10.1039/p298700000s1Suche in Google Scholar
[4] Atwood, J. L., Harnada, F., Robinson, K. D., Orr, G. W., & Vincent, R. L. (1991). X-ray diffraction evidence for aromatic π-hydrogen bonding to water. Nature, 349, 683–684. DOI: 10.1038/349683a0. http://dx.doi.org/10.1038/349683a010.1038/349683a0Suche in Google Scholar
[5] Bakshi, P. K., Linden, A., Vincent, B. R., Roe, S. P., Adhikesavalu, D., Cameron, T. S., & Knop, O. (1994). Crystal chemistry of tetraradial species. Part 4. Hydrogen bonding to aromatic π systems: crystal structures of fifteen tetraphenylborates with organic ammonium cations. Canadian Journal of Chemistry, 72, 1273–1293. DOI: 10.1139/v94-161. http://dx.doi.org/10.1139/v94-16110.1139/v94-161Suche in Google Scholar
[6] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Suche in Google Scholar
[7] Bogdanović, G. A., Spasojević-de Biré, A. S., & Zarić, S. D. (2002). Evidence based on crystal structures and calculations of a C-H⋯π interaction between an organic moiety and a chelate ring in transition metal complexes. European Journal of Inorganic Chemistry, 2002, 1599–1602. DOI: 10.1002/1099-0682(200207)2002:7〈1599::AID-EJIC1599〉3.0.CO;2-I. http://dx.doi.org/10.1002/1099-0682(200207)2002:7<1599::AID-EJIC1599>3.0.CO;2-I10.1002/1099-0682(200207)2002:7<1599::AID-EJIC1599>3.0.CO;2-ISuche in Google Scholar
[8] Burghardt, T. P., Juranić, N., Macura, S., & Ajtai, K. (2002). Cation-π interaction in a folded polypeptide. Biopolymers, 63, 261–272. DOI: 10.1002/bip.10070. http://dx.doi.org/10.1002/bip.1007010.1002/bip.10070Suche in Google Scholar
[9] Castińeiras, A., Sicilia-Zafra, A. G., Gonzáles-Pérez, J. M., Choquesillo-Lazarte, D., & Niclós-Gutiérrez, J. (2002). Intramolecular ”aryl-metal chelate ring“ π,π-interactions as structural evidence for metalloaromaticity in (aromatic α,α′-diimine)-copper(II) chelates: Molecular and crystal structure of aqua(1,10-phenanthroline)(2-benzylmalonato)copper(II) three-hydrate. Inorganic Chemistry, 41, 6956–6958. DOI: 10.1021/ic026004h. http://dx.doi.org/10.1021/ic026004h10.1021/ic026004hSuche in Google Scholar
[10] Courty, A., Mons, A., Dimicoli, I., Piuzzi, F., Gaigeot, M. P., Brenner, V., de Pujo, P., & Millié, P. (1998). Quantum effects in the threshold photoionization and energetics of the benzene-H2O and benzene-D2O complexes: Experiment and simulation. Journal of Physical Chemistry A, 102, 6590–6600. DOI: 10.1021/jp980761c. http://dx.doi.org/10.1021/jp980761c10.1021/jp980761cSuche in Google Scholar
[11] Craven, V., Zhang, C., Janiak, C., Rheinwald, G., & Lang, H. (2003). Synthesis, structure and solution chemistry of (5,5′-dimethyl-2,2′-bipyridine)(IDA)copper(II) and structural comparison with aqua(IDA)(1,10-phenanthroline)copper (II) (IDA = iminodiacetato). Zeitschrift für Anorganische und Allgemeine Chemie, 629, 2282–2290. DOI: 10.1002/zaac.200300223. http://dx.doi.org/10.1002/zaac.20030022310.1002/zaac.200300223Suche in Google Scholar
[12] Ditchfield, R.; Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physic, 54, 724–728. DOI: 10.1063/1.1674902. http://dx.doi.org/10.1063/1.167490210.1063/1.1674902Suche in Google Scholar
[13] Dunning, T. H., Jr., & Hay, P. J. (1977). Gaussian basis sets for molecular calculations. In Schaefer, H. F., III. (Ed.), Methods of electronic structure theory (Modern Theoretical Chemistry Series-Volume 3) (pp. 1–27). New York: Plenum Press. Suche in Google Scholar
[14] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M., Gonzalez, W. C., & Pople, J. A. (2004). Gaussian 03, Revision D.02 [computer software]. Wallingford, CT: Gaussian, Inc. Suche in Google Scholar
[15] Gordon, M. S. (1980). The isomers of silacyclopropane. Chemical Physics Letters, 76, 163–168. DOI: 10.1016/0009-2614(80)80628-2. http://dx.doi.org/10.1016/0009-2614(80)80628-210.1016/0009-2614(80)80628-2Suche in Google Scholar
[16] Gutowski, H. S., Emilsson, T., & Arunan, E. (1993). Low-J rotational spectra, internal rotation, and structures of several benzene-water dimers. Journal of Chemical Physics, 99, 4883–4893. DOI: 10.1063/1.466038. http://dx.doi.org/10.1063/1.46603810.1063/1.466038Suche in Google Scholar
[17] Hariharan, P. C., & Pople, J. A. (1973). Influence of polarization functions on MO hydrogenation energies. Theoretica Chimica Acta, 28, 213–222. DOI: 10.1007/BF00533485. http://dx.doi.org/10.1007/BF0053348510.1007/BF00533485Suche in Google Scholar
[18] Hariharan, P. C., & Pople, J. A. (1974). Accuracy of AHn equilibrium geometries by single determinant molecular or bital theory. Molecular Physics, 27, 209–214. DOI: 10.1080/00268977400100171. http://dx.doi.org/10.1080/0026897740010017110.1080/00268977400100171Suche in Google Scholar
[19] Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core. Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448799. http://dx.doi.org/10.1063/1.44897510.1063/1.448799Suche in Google Scholar
[20] Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. Journal of Chemical Physics, 56, 2257–2261. DOI: 10.1063/1.1677527. http://dx.doi.org/10.1063/1.167752710.1063/1.1677527Suche in Google Scholar
[21] Jiang, Y. F., Xi, C. J., Liu, Y. Z., Niclós-Gutiérrez, J., & Choquesillo-Lazarte, D. (2005). Intramolecular “CH⋯π (metal chelate ring) interactions” as structural evidence for metalloaromaticity in bis(pyridine-2,6-diimine)RuII complexes. European Journal of Inorganic Chemistry, 2005, 1585–1588. DOI: 10.1002/ejic.200400864. http://dx.doi.org/10.1002/ejic.20040086410.1002/ejic.200400864Suche in Google Scholar
[22] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Suche in Google Scholar
[23] Levitt, M., & Perutz, M. F. (1988). Aromatic rings act as hydrogen bond acceptors. Journal of Molecular Biology, 201, 751–754. DOI: 10.1016/0022-2836(88)90471-8. http://dx.doi.org/10.1016/0022-2836(88)90471-810.1016/0022-2836(88)90471-8Suche in Google Scholar
[24] Mao, L. S., Wang, Y. L., Liu, Y. M., & Hu, X. C. (2004). Molecular determinants for ATP-binding in proteins: A data mining and quantum chemical analysis. Journal of Molecular Biology, 336, 787–807. DOI: 10.1016/j.jmb.2003.12.056. http://dx.doi.org/10.1016/j.jmb.2003.12.05610.1016/j.jmb.2003.12.056Suche in Google Scholar
[25] Masui, H. (2001). Metalloaromaticity. Coordination Chemistry Reviews, 219-221, 957–992. DOI: 10.1016/S0010-8545(01)00389-7. http://dx.doi.org/10.1016/S0010-8545(01)00389-710.1016/S0010-8545(01)00389-7Suche in Google Scholar
[26] Medaković, V. B., Milčić, M. K., Bogdanović, G. A, & Zarić, S. D. (2004). C-H⋯π interactions in the metal-porphyrin complexes with chelate ring as the H acceptor. Journal of Inorganic Biochemistry, 98, 1867–1873. DOI: 10.1016/j.jinorgbio.2004.08.012. http://dx.doi.org/10.1016/j.jinorgbio.2004.08.01210.1016/j.jinorgbio.2004.08.012Suche in Google Scholar
[27] Milčić, M. K., Medaković, V. B., Sredojević D. N., Juranić N. O., & Zarić, S. D. (2006a). Electron delocalization mediates the metal-dependent capacity for CH/π interactions of acetylacetonato chelates. Inorganic Chemistry, 45, 4755–4763. DOI: 10.1021/ic051926g. http://dx.doi.org/10.1021/ic051926g10.1021/ic051926gSuche in Google Scholar
[28] Milčić, M. K., Medaković, V. B., & Zarić, S. D. (2006b). CH/π interactions of pi-system of acetylacetonato chelate ring: Comparison of CH/π interactions of Ni(II)-acetylacetonato chelate and benzene rings. Inorganica Chimica Acta, 359, 4427–4430. DOI: 10.1016/j.ica.2006.06.022. http://dx.doi.org/10.1016/j.ica.2006.06.02210.1016/j.ica.2006.06.022Suche in Google Scholar
[29] Milčić, M. K., Ostojić, B., & Zarić, S. D. (2007). Are chelate rings aromatic? Calculations of magnetic properties of acetylacetonato and o-benzoquinonediimine chelate rings. Inorganic Chemistry, 46, 7109–7114. DOI: 10.1021/ic062292w. http://dx.doi.org/10.1021/ic062292w10.1021/ic062292wSuche in Google Scholar
[30] Milčić, M. K., Tomić, Z. D., & Zarić S. D. (2004). Very strong metal ligand aromatic cation-π interactions in transition metal complexes: intermolecular interaction in tetraphenylborate salts. Inorganica Chimica Acta, 357, 4327–4329. DOI: 10.1016/j.ica.2004.06.019. http://dx.doi.org/10.1016/j.ica.2004.06.01910.1016/j.ica.2004.06.019Suche in Google Scholar
[31] Milčić, M. K., & Zarić S. D. (2001). Intramolecular metal ligand-aromatic cation-π interactions in crystal structures of transition metal complexes. European Journal of Inorganic Chemistry, 2001, 2143–2150. DOI: 10.1002/1099-0682(200108)2001:8〈2143::AID-EJIC2143〉3.0.CO;2-C. http://dx.doi.org/10.1002/1099-0682(200108)2001:8<2143::AID-EJIC2143>3.0.CO;2-C10.1002/1099-0682(200108)2001:8<2143::AID-EJIC2143>3.0.CO;2-CSuche in Google Scholar
[32] Mons, M., Dimicoli, I., Tardivel, B., Piuzzi, F., Brenner, V., & Millié, P. (2002). Energetics of a model NH-π interaction: the gas phase benzene-NH3 complex. Physical Chemistry Chemical Physics, 4, 571–576. DOI: 10.1039/b108146m. http://dx.doi.org/10.1039/b108146m10.1039/b108146mSuche in Google Scholar
[33] Mukhopadhyay, U., Choquesillo-Lazarte, D., Niclós-Gutiérrez, J., & Bernal, I. (2004). A critical look on the nature of the intra-molecular interligand π,π-stacking interaction in mixed-ligand copper(II) complexes of aromatic side-chain amino acidates and α,α′-diimines. CrystEngComm, 6, 627–632. DOI: 10.1039/b417707j. http://dx.doi.org/10.1039/b417707j10.1039/B417707JSuche in Google Scholar
[34] Nishio, M. (2004). CH/π hydrogen bonds in crystals. CrysEngComm, 6, 130–158. DOI: 10.1039/b313104a. http://dx.doi.org/10.1039/b313104a10.1039/b313104aSuche in Google Scholar
[35] Novokmet, S., Heinemann, F. W., Zahl, A., & Alsfasser, R. (2005). Aromatic interactions in unusual backbone nitrogen-coordinated zinc peptide complexes. A crystallographic and spectroscopic study. Inorganic Chemistry, 44, 4796–4805. DOI: 10.1021/ic0500053. http://dx.doi.org/10.1021/ic050005310.1021/ic0500053Suche in Google Scholar
[36] Pletneva, E. V., Laederach, A. T., Fulton, D. B., & Kostić, N. M. (2001). The role of cation-π interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. Journal of the American Chemical Society, 123, 6232–6245. DOI: 10.1021/ja010401u. http://dx.doi.org/10.1021/ja010401u10.1021/ja010401uSuche in Google Scholar
[37] Pucci, D., Albertini, V., Bloise, R., Bellusci, A., Cataldi, A., Catapano, C. V., Ghedini, M., & Crispini, A. (2006). Synthesis and anticancer activity of cyclopalladated complexes containing 4-hydroxy-acridine. Journal of Inorganic Biochemistry, 100, 1575–1578. DOI: 10.1016/j.jinorgbio.2006.04.009. http://dx.doi.org/10.1016/j.jinorgbio.2006.04.00910.1016/j.jinorgbio.2006.04.009Suche in Google Scholar
[38] Rodham, D. A., Suzuki, S., Suenram, R. D., Lovas, F. J., Dasgupta, S., Goddard, W. A. III, & Blake, G. A. (1993). Hydrogen bonding in the benzene-ammonia dimer. Nature, 362, 735–737. DOI: 10.1038/362735a0. http://dx.doi.org/10.1038/362735a010.1038/362735a0Suche in Google Scholar
[39] Sinnokrot, M. O., Valeev, E. F., & Sherrill, C. D. (2002). Estimates of the ab initio limit for π-π interactions: The benzene dimer. Journal of the American Chemical Society, 124, 10887–10893. DOI: 10.1021/ja025896h. http://dx.doi.org/10.1021/ja025896h10.1021/ja025896hSuche in Google Scholar
[40] Sredojević, D. N., Tomić, Z. D., & Zarić, S. D. (2007a). Influence of metal and ligand types on stacking interactions of phenyl rings with square-planar transition metal complexes. Central European Journal of Chemistry, 5, 20–31. DOI: 10.2478/s11532-006-0068-3. http://dx.doi.org/10.2478/s11532-006-0068-310.2478/s11532-006-0068-3Suche in Google Scholar
[41] Sredojević, D., Bogdanović, G. A., Tomić, Z. D., & Zarić, S. D. (2007b). Stacking vs. CH-π interactions between chelate and aryl rings in crystal structures of square-planar transition metal complexes. CrystEngComm, 9, 793–798. DOI: 10.1039/b704302c. http://dx.doi.org/10.1039/b704302c10.1039/b704302cSuche in Google Scholar
[42] Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41, 48–76. DOI: 10.1002/1521-3773(20020104)41:1〈48::AID-ANIE48〉3.0.CO;2-U. http://dx.doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar
[43] Steiner, T., & Koellner, G. (2001). Hydrogen bonds with piacceptors in proteins: frequencies and role in stabilizing local 3D structures. Journal of Molecular Biology, 305, 535–557. DOI: 10.1006/jmbi.2000.4301. http://dx.doi.org/10.1006/jmbi.2000.430110.1006/jmbi.2000.4301Suche in Google Scholar
[44] Steiner, T., Schreurs, A. M. M., Lutz, M., & Kroon, J. (2001). Making very short O-H⋯Ph hydrogen bonds: the example of tetraphenylborate salts. New Journal of Chemistry, 25, 174–178. DOI: 10.1039/b004932h. http://dx.doi.org/10.1039/b004932h10.1039/b004932hSuche in Google Scholar
[45] Suezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S., & Nishio, M. (2002). CH/π interactions implicated in the crystal structure of transition metal compounds — a database study. European Journal of Inorganic Chemistry, 2002, 3148–3155. DOI: 10.1002/1099-0682(200212)2002:12〈3148AID-EJIC3148〉3.0.CO;2-X. http://dx.doi.org/10.1002/1099-0682(200212)2002:12<3148::AID-EJIC3148>3.0.CO;2-X10.1002/1099-0682(200212)2002:12<3148::AID-EJIC3148>3.0.CO;2-XSuche in Google Scholar
[46] Suzuki, S., Green, P. G., Bumgarner, R. E., Dasgupta, S., Goddard, W. A. III, & Blake, G. A. (1992). Benzene forms hydrogen bonds with water. Science, 257, 942–945. DOI: 10.1126/science.257.5072.942. http://dx.doi.org/10.1126/science.257.5072.94210.1126/science.257.5072.942Suche in Google Scholar
[47] Tomić, Z. D., Novaković, S. B., & Zarić, S. D. (2004). Intermolecular interactions between chelate rings and phenyl rings in square-planar copper(II) complexes. European Journal of Inorganic Chemistry, 2004, 2215–22118. DOI: 10.1002/ejic.200400086. http://dx.doi.org/10.1002/ejic.200400086Suche in Google Scholar
[48] Tomić, Z. D., Sredojević, D. N., & Zarić, S. D. (2006). Stacking interactions between chelate and phenyl rings in square planar transition metal complexes. Crystal Growth & Design, 6, 29–33. DOI: 10.1021/cg050392r. http://dx.doi.org/10.1021/cg050392r10.1021/cg050392rSuche in Google Scholar
[49] Tsubaki, V., Tohyama, S., Koike, K., Saitoh, H., & Ishitani, O. (2005). Effect of intramolecular π-π and CH-π interactions between ligands on structure, electrochemical and spectroscopic properties of fac-[Re(bpy)(CO)3(PR3)]+ (bpy = 2,2′-bipyridine; PR3 = trialkyl or triarylphosphines). Dalton Transactions, 2005, 385–395. DOI: 10.1039/b407947g. Suche in Google Scholar
[50] Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., & Tanabe, K. (2000). Origin of the attraction and directionality of the NH/π interaction: comparison with OH/π and CH/π interactions. Journal of the American Chemical Society, 122, 11450–11458. DOI: 10.1021/ja001901a. http://dx.doi.org/10.1021/ja001901a10.1021/ja001901aSuche in Google Scholar
[51] Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., & Tanabe, K. (2002). Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. Journal of the American Chemical Society, 124, 104–112. DOI: 10.1021/ja0105212. http://dx.doi.org/10.1021/ja010521210.1021/ja0105212Suche in Google Scholar
[52] Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J., & Nishio, M. (1999). CH/π interaction in the conformation of organic compounds. A database study. Tetrahedron, 55, 10047–10056. DOI: 10.1016/S0040-4020(99)00539-6. http://dx.doi.org/10.1016/S0040-4020(99)00539-610.1016/S0040-4020(99)00539-6Suche in Google Scholar
[53] Vaupel, S., Brutschy, B., Tarakeshwar, P., & Kim, K. S. (2006). Characterization of weak NH-π intermolecular interactions of ammonia with various substituted π-systems. Journal of the American Chemical Society, 128, 5416–5426. DOI: 10.1021/ja056454j. http://dx.doi.org/10.1021/ja056454j10.1021/ja056454jSuche in Google Scholar
[54] Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. Journal of Chemical Physics, 82, 284–298. DOI: 10.1063/1.448800. http://dx.doi.org/10.1063/1.44880010.1063/1.448800Suche in Google Scholar
[55] Zarić, S. D. (1999) Cation-π interaction with transition metal complex as cation. Chemical Physics Letters, 311, 77–80. DOI: 10.1016/S0009-2614(99)00805-2. http://dx.doi.org/10.1016/S0009-2614(99)00805-210.1016/S0009-2614(99)00805-2Suche in Google Scholar
[56] Zarić, S. D. (2003). Metal ligand aromatic cation-π interactions. European Journal of Inorganic Chemistry, 2003, 2197–2209. DOI: 10.1002/ejic.200200278. http://dx.doi.org/10.1002/ejic.20020027810.1002/ejic.200200278Suche in Google Scholar
[57] Zarić, S. D., Popović, D., & Knapp, E. W. (2000). Metal ligand-aromatic cation-π interactions in metallo-proteins: ligands coordinated to metal interact with aromatic residues. Chemistry — A European Journal, 6, 3935–3942. DOI:10.1002/1521-3765(20001103)6:21〈3935::AID-CHEM3935〉3.0.CO;2-J. http://dx.doi.org/10.1002/1521-3765(20001103)6:21<3935::AID-CHEM3935>3.0.CO;2-J10.1002/1521-3765(20001103)6:21<3935::AID-CHEM3935>3.0.CO;2-JSuche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Artikel in diesem Heft
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media