Abstract
The aim of this study was to investigate the changes in carbohydrate components and the crystalline structure in hemp bast fibers by adding ethyl acetate to acetic acid/water pulping processes. It was found that ethyl acetate added to acetic acid/water process had a positive effect on yield, viscosity and carbohydrate components in pulp. It was assumed that the delignification ratio increased by adding ethyl acetate to aqueous acetic acid pulping. Xylose content in hemp bast fibers was affected more negatively in the ethyl acetate/acetic acid/water process than in the acetic acid/water one. Crystallinity and crystallite size were higher in pulp sample obtained by the acetic acid/water process without ethyl acetate.
[1] Ahtee, M., Hattula, T., Mangs, J., & Paakkari, T. (1983). An x-ray diffraction method for determination of crystallinity in wood pulp. Paperi ja Puu, 65, 475–480. Search in Google Scholar
[2] Åkerholm, M., Hinterroister, B., & Salmen, L. (2004). Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate Research, 339, 569–578. DOI: 10.1016/j.carres.2003.11.012. http://dx.doi.org/10.1016/j.carres.2003.11.01210.1016/j.carres.2003.11.012Search in Google Scholar
[3] Åkerholm, M., & Salmén, L. (2002). Dynamic FT-IR spectoroscopy for carbohydrate analysis of wood pulps. Journal of Pulp and Paper Science, 28, 245–249. Search in Google Scholar
[4] Awadel-Karim, S., Nazhad, M. M., & Paszner, L. (1999). Factors affecting crystalline structure of cellulose during solvent purification treatment. Holzforschung, 53, 1–8. DOI: 10.1515/HF.1999.001. http://dx.doi.org/10.1515/HF.1999.00110.1515/HF.1999.001Search in Google Scholar
[5] Baker, A. A., Helbert, W., Sugiyama, J., & Miles, M. J. (1997). High-resolution atomic force microscopy of native Valonia cellulose I microcrystals. Journal of Structural Biology, 119, 129–138. DOI: 10.1006/jsbi.1997.3866. http://dx.doi.org/10.1006/jsbi.1997.386610.1006/jsbi.1997.3866Search in Google Scholar
[6] Balta-Calleja, F. J, & Vonk, C. G. (1989). X-Ray scattering of synthetic polymers. In A. D. Jenkins (Ed.), Polymer science library (Vol. 8, pp. 175–204). Amsterdam: Elsevier. Search in Google Scholar
[7] Clark, J. A. (1978). Pulp technology and treatment for paper. San Francisco: Miller Freeman Publications Inc. Search in Google Scholar
[8] De Souza, I. J., Bouchard, J., Methot, M., Berry, R., & Argyropoulos, D. S. (2002). Carbohydrates in oxygen delignification. Part I: Changes in cellulose crystallinity. Journal of Pulp and Paper Science, 28, 167–170. Search in Google Scholar
[9] Evans, R., Newman, R. H., Roick, U. C., Suckling, I. D., & Wallis, A. F. A. (1995). Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results. Holzforschung, 49, 498–504. http://dx.doi.org/10.1515/hfsg.1995.49.6.49810.1515/hfsg.1995.49.6.498Search in Google Scholar
[10] Fengel, D., & Wegener, G. (1989). Wood chemistry, ultrastructure, reactions. New York: Walter De Gruyter Co. Search in Google Scholar
[11] Gümüşkaya, E., & Usta, M. (2002). Crystalline structure properties of bleached and unbleached wheat straw (Triticum aestivum L.). Turkish Journal of Agriculture and Forestry, 26, 247–252. Search in Google Scholar
[12] Gümüşkaya, E., Usta, M., & Kirci, H. (2003). The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability, 81, 559–564. DOI: 10.1016/S0141-3910(03)00157-5. http://dx.doi.org/10.1016/S0141-3910(03)00157-510.1016/S0141-3910(03)00157-5Search in Google Scholar
[13] Helbert, W., Sugiyama, J., Ishihara, M., & Yamanaka, S. (1997). Characterization of native cellulose in the cell walls of Oomycota. Journal of Biotechnology, 57, 29–37. DOI: 10.1016/S0168-1656(97)00084-9. http://dx.doi.org/10.1016/S0168-1656(97)00084-910.1016/S0168-1656(97)00084-9Search in Google Scholar
[14] Hult, E. L, Iversen, T., & Sugiyama, J. (2003). Characterization of the supermolecular structure of cellulose in wood pulp fibers. Cellulose, 10, 103–110. DOI: 10.1023/A:1024080700873. http://dx.doi.org/10.1023/A:102408070087310.1023/A:1024080700873Search in Google Scholar
[15] Hult, E. L., Liitiä, T., Maunu, S. L., Hortling, B., & Iversen, T. (2002). A CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibers. Carbohydrate Polymers, 49, 231–234. DOI: 10.1016/S0144-8617(01)00309-5. http://dx.doi.org/10.1016/S0144-8617(01)00309-510.1016/S0144-8617(01)00309-5Search in Google Scholar
[16] Imai, T., & Sugiyama, J. (1998). Nanodomains of I α and I β cellulose im algal microfibrils Macromolecules, 31, 6275–6279. DOI: 10.1021/ma980664h. http://dx.doi.org/10.1021/ma980664h10.1021/ma980664hSearch in Google Scholar
[17] Imai, T., & Sugiyama, J. (1997). Structure determination of cellulose microfibrils in the cell wall of Cladophora. Wood Research, 84, 28–30. Search in Google Scholar
[18] Liitiä, T., Maunu, S. L., Hortling, B., Tamminen, T., Pekkala, O., & Varhimo, A. (2003). Cellulose crystallinity and ordering of hemicellulose in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose, 10, 307–316. DOI: 10.1023/A:1027302526861. http://dx.doi.org/10.1023/A:102730252686110.1023/A:1027302526861Search in Google Scholar
[19] Lohrasebi, A. H, & Paszner, L. (2001). Predictive modeling of high pressure naem-catalyzed (hp-alpulp) organosolv pulping of spruce. TAPPI Journal, 84, 69. Search in Google Scholar
[20] Mo, Z., Yang, B., & Zhang, H. (1993). The degree of crystallinity of multi component polymers by WAXD. Chinese Journal of Polymer Science, 12, 296–301. Search in Google Scholar
[21] Ruland, W. (1961). X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallographica, 14, 1180–1185. DOI: 10.1107/S0365110X61003429. http://dx.doi.org/10.1107/S0365110X6100342910.1107/S0365110X61003429Search in Google Scholar
[22] Rydholm, S. A. (1965). Pulping process. New York: Interscience Publisher. Search in Google Scholar
[23] Saka, S. (2001). Chemical composition and distribution. In D. N. S. Hon, and N. Shiraishi (Eds.), Wood and cellulose chemistry (2nd ed.) (pp. 51–81). New York: Marcel Dekker. Search in Google Scholar
[24] Sassi, J. F., Tekely, P., & Chanzy, H. (2000). Relative susceptibility of I α and I β phases of cellulose towards acetylation. Cellulose, 7, 119–132. DOI: 10.1023/A:1009224008802. http://dx.doi.org/10.1023/A:100922400880210.1023/A:1009224008802Search in Google Scholar
[25] SCAN. (1973). Scan test methods (1959–1973). Stockholm: Scandinavian Pulp, Paper and Board Testing Committee. Search in Google Scholar
[26] TAPPI. (2002). Test methods. Atlanta: TAPPI Press. Search in Google Scholar
[27] Vonk, C. G. (1973). Computerization of Ruland’s method for determination of the crystallinity in polymers. Journal of Applied Crystallography, 6, 148.152. DOI: 10.1107/S0021889873008332. 10.1107/S0021889873008332Search in Google Scholar
[28] Wada, M., Okano, T., & Sugiyama, J. (2001). Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. Journal of Wood Science, 47, 124–128. DOI: 10.1007/BF00780560. http://dx.doi.org/10.1007/BF0078056010.1007/BF00780560Search in Google Scholar
[29] Wada, M., Sugiyama, J., & Okano, T. (1993). Native cellulose on the basis of two crystalline phase (I α /I β) systems. Journal of Applied Polymer Science, 49, 1491–1496. DOI: 10.1002/app.1993.070490817. http://dx.doi.org/10.1002/app.1993.07049081710.1002/app.1993.070490817Search in Google Scholar
[30] Wada, M., Sugiyama, J., & Okano, T. (1995). Two crystalline phases (I α /I β) system of native cellulose in relation to plant phylogenesis. Mokuzai Gakkaishi, 41, 186–192. Search in Google Scholar
[31] Young, R. A. (1986). Structure, swelling and bonding of cellulose fibers. In R. A. Young, and R. M. Rowell (Eds.), Cellulose structure, modification and hydrolysis (pp. 91–128). New York: John Willey & Sons. Search in Google Scholar
[32] Young, R. A. (1989). Ester pulping: A status report. TAPPI Journal, 72, 195–200. Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Articles in the same Issue
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media