Startseite Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography

  • Huawei Lu EMAIL logo , Huanquan Sun , Xia Liu und Shengxiang Jiang
Veröffentlicht/Copyright: 25. März 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hollow fibre based liquid phase microextraction (HF-LPME) with high performance liquid chromatography (HPLC) was developed for the determination of alkaloids in Corydalis yanhusuo. Three alkaloids (protopine, tetrahydropalmatine, tetrahydroberberine) were extracted from a 10 mL alkaline sample (donor phase) to an organic phase impregnated in the pores of the hollow fibre, and then, they were extracted to an acidic solution (acceptor phase) in the lumen of the fibre. The extract was determined directly by HPLC. Parameters affecting the HF-LPME include the organic solvent, pH of the donor and the acceptor phase, the extraction time and the stirring speed were investigated systematically. To minimize the error of the injection, palmatine was added as an internal standard (I.S.). Under optimal conditions, calibration curves were obtained in the range of 0.1–1.0 mg L−1 with a reasonable linearity (r 2 > 0.993) and the limits of detection (LODs) ranged between 10.0 × 10−3 mg L−1 and 13.7 × 10−3 mg L−1. Additionally, enrichment factors with 100 to 184-fold were obtained. The method was then applied to the crude extract of Corydalis yanhusuo successfully.

[1] Barria, T., & Jönsson, J. (2008). Advances and developments in membrane extraction for gas chromatography: Techniques and applications. Journal of Chromatography A, 1186, 16–38. DOI: 10.1016/j.chroma.2008.02.002. http://dx.doi.org/10.1016/j.chroma.2008.02.00210.1016/j.chroma.2008.02.002Suche in Google Scholar

[2] Basheer, C., Alnedhary, A. A., Madhava Rao, B. S., & Lee, H. K. (2007). Determination of organophosphorous pesticides in wastewater samples using binary-solvent liquid-phase microextraction and solid-phase microextraction: A comparative study. Analytica Chimica Acta, 605, 147–152. DOI: 10.1016/j.aca.2007.10.006. http://dx.doi.org/10.1016/j.aca.2007.10.00610.1016/j.aca.2007.10.006Suche in Google Scholar

[3] Beales, K. A., Betteridge, K., Colegate, S. M., & Edgar, J. A. (2004). Solid-phase extraction and LC-MS analysis of pyrrolizidine alkaloids in honeys. Journal of Agricultural and Food Chemistry, 52, 6664–6672. DOI: 10.1021/jf049102p. http://dx.doi.org/10.1021/jf049102p10.1021/jf049102pSuche in Google Scholar

[4] Brondz, L., Ekeberg, D., Hoiland, K., Bell, D. S., & Annino, A. R. (2007). The real nature of the indole alkaloids in Cortinarius infractus: Evaluation of artifact formation through solvent extraction method development. Journal of Chromatography A, 1148, 1–7. DOI: 10.1016/j.chroma.2007.02.074. http://dx.doi.org/10.1016/j.chroma.2007.02.07410.1016/j.chroma.2007.02.074Suche in Google Scholar

[5] Cardozo, E. L., Jr., Cardozo-Filho, L., Filho, O. F., & Zanoelo, E. F. (2007). Selective liquid CO2 extraction of purine alkaloids in different Ilex paraguariensis progenies grown under environmental influences. Journal of Agricultural and Food Chemistry, 55, 6835–6841. DOI: 10.1021/jf0706225. http://dx.doi.org/10.1021/jf070622510.1021/jf0706225Suche in Google Scholar

[6] Dams, R., Benijts, T., Lambert, W. E., & De Leenheer, A. P. (2002). Simultaneous determination of in total 17 opium alkaloids and opioids in blood and urine by fast liquid chromatography-diode-array detection-fluorescence detection, after solid-phase extraction. Journal of Chromatography B, 773, 53–61. DOI: 10.1016/S1570-0232(01)00594-3. http://dx.doi.org/10.1016/S1570-0232(01)00594-310.1016/S1570-0232(01)00594-3Suche in Google Scholar

[7] Ding, B., Zhou, T., Fan, G., Hong, Z., & Wu, Y. (2007). Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo W. T. Wang by LC-MS/MS and LC-DAD. Journal of Pharmaceutical and Biomedical Analysis, 45, 219–226. DOI: 10.1016/j.jpba.2007.06.009. http://dx.doi.org/10.1016/j.jpba.2007.06.00910.1016/j.jpba.2007.06.009Suche in Google Scholar PubMed

[8] Esrafili, A., Yamini, Y., & Shariati, S. (2007). Hollow fibrebased liquid phase microextraction combined with highperformance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids. Analytica Chimica Acta, 604, 127–133. DOI: 10.1016/j.aca. 2007.10.012. http://dx.doi.org/10.1016/j.aca.2007.10.01210.1016/j.aca.2007.10.012Suche in Google Scholar PubMed

[9] Huie, C. W. (2002). A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry, 373, 23–30. DOI: 10.1007/s00216-002-1265-3. http://dx.doi.org/10.1007/s00216-002-1265-310.1007/s00216-002-1265-3Suche in Google Scholar PubMed

[10] Iwasa, K., Kondo, Y., Kamigauchi, M., & Takao, N. (1994). An application of HPLC and LC/API-MS for identification of metabolites of protoberberine alkaloids in cell cultures of Corydalis pallida var. tenuis. Planta Medica, 60, 290–292. http://dx.doi.org/10.1055/s-2006-95948310.1055/s-2006-959483Suche in Google Scholar PubMed

[11] Li, H., Zhang, W., Liu, R., Zhang, C., Han, T., Wang, X., Wang, X., Zhu, J., & Chen, C. (2006). Simultaneous determination of four active alkaloids from a traditional chinese medicine Corydalis saxicola Bunting (Yanhuanglian) in plasma and urine samples by LC-MS-MS. Journal of Chromatography B, 831, 140–146. DOI: 10.1016/j.jchromab.2005.11.049. http://dx.doi.org/10.1016/j.jchromb.2005.11.049Suche in Google Scholar

[12] Li, Y., Cui, S., Cheng, Y., Chen, X., & Hu, Z. (2004). Application of nonaqueous capillary electrophoresis for quantitative analysis of quinolizidine alkaloids in Chinese herbs. Analytica Chimica Acta, 508, 17–22. DOI: 10.1016/j.aca.2003.11.043. http://dx.doi.org/10.1016/j.aca.2003.11.04310.1016/j.aca.2003.11.043Suche in Google Scholar

[13] Liao, J., Liang, W., & Tu, G. (1994). Determination of quaternary and tertiary alkaloids in Corydalis decumbens by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 669, 225–229. DOI: 10.1016/0021-9673(94)80351-X. http://dx.doi.org/10.1016/0021-9673(94)80351-X10.1016/0021-9673(94)80351-XSuche in Google Scholar

[14] Ling, J., Zhang, G., Cui, Z., & Zhang, C. (2007). Supercritical fluid extraction of quinolizidine alkaloids from Sophora flavescens Ait. and purification by high-speed countercurrent chromatography. Journal of Chromatography A, 1145, 123–127. DOI: 10.1016/j.chroma.2007.01.080. http://dx.doi.org/10.1016/j.chroma.2007.01.08010.1016/j.chroma.2007.01.080Suche in Google Scholar

[15] Lord, H., & Pawliszyn, J. (2000). Evolution of solid-phase microextraction technology. Journal of Chromatography A, 885, 153–193. DOI: 10.1016/S0021-9673(00)00422-2. http://dx.doi.org/10.1016/S0021-9673(00)00535-510.1016/S0021-9673(00)00422-2Suche in Google Scholar

[16] Mroczek, T., Giowniak, K., & Kowalska, J. (2006). Solid-liquid extraction and cation-exchange solid-phase extraction using a mixed-mode polymeric sorbent of Datura and related alkaloids. Journal of Chromatography A, 1107, 9–18. DOI: 10.1016/j.chroma.2005.12.034. http://dx.doi.org/10.1016/j.chroma.2005.12.03410.1016/j.chroma.2005.12.034Suche in Google Scholar PubMed

[17] Ou, J., Kong, L., Pan, C., Su, X., Lei, X., & Zou, H. (2006). Determination of dl-tetrahydropalmatine in Corydalis yanhusuo by l-tetrahydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography. Journal of Chromatography A, 1117, 163–169. DOI: 10.1016/j.chroma.2006.03.084. http://dx.doi.org/10.1016/j.chroma.2006.03.08410.1016/j.chroma.2006.03.084Suche in Google Scholar PubMed

[18] Ouyang, G., & Pawliszyn, J. (2006). Kinetic calibration for automated hollow fibre-protected liquid-phase microextraction. Analytical Chemistry, 78, 5783–5788. DOI: 10.1021/ac060669+. http://dx.doi.org/10.1021/ac060669+10.1021/ac060669+Suche in Google Scholar PubMed

[19] Pedersen-Bjergaard, S., & Rasmussen, K. E. (1999). Liquidliquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71, 2650–2656. DOI: 10.1021/ac990055n. http://dx.doi.org/10.1021/ac990055n10.1021/ac990055nSuche in Google Scholar PubMed

[20] Pedersen-Bjergaard, S., & Rasmussen, K. E. (2005). Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques. Journal of Chromatography B, 817, 3–12. DOI: 10.1016/j.jchromb.2004.08.034. http://dx.doi.org/10.1016/j.jchromb.2004.08.03410.1016/j.jchromb.2004.08.034Suche in Google Scholar PubMed

[21] Pedersen-Bjergaard, S., & Rasmussen, K. E. (2008). Liquidphase microextraction with porous hollow fibres, a miniaturized and highly flexible format for liquid-liquid extraction. Journal of Chromatography A, 1184, 132–142. DOI: 10.1016/j.chroma.2007.08.088. http://dx.doi.org/10.1016/j.chroma.2007.08.08810.1016/j.chroma.2007.08.088Suche in Google Scholar PubMed

[22] Pereira, C. G., Marques, M. O. M., Barreto, A. S., Siani, A. C., Fernandes, E. C., & Meireles, M. A. A. (2004). Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2+ethanol: an evaluation of the process variables and the raw material origin. The Journal of Supercritical Fluids, 30, 51–61. DOI: 10.1016/S0896-8446(03)0012-8. http://dx.doi.org/10.1016/S0896-8446(03)00112-8Suche in Google Scholar

[23] Pezo, D., Salafranca, J., & Nerín, C. (2007). Development of an automatic multiple dynamic hollow fibre liquidphase microextraction procedure for specific migration analysis of new active food packagings containing essential oils. Journal of Chromatography A, 1174, 85–94. DOI: 10.1016/j.chroma.2007.08.033. http://dx.doi.org/10.1016/j.chroma.2007.08.03310.1016/j.chroma.2007.08.033Suche in Google Scholar

[24] Psillakis, E., & Kalogerakis, N. (2003a). Developments in liquidphase microextraction. Trends in Analytical Chemistry, 22, 565–574. DOI: 10.1016/S0165-9936(03)01007-0. http://dx.doi.org/10.1016/S0165-9936(03)01007-010.1016/S0165-9936(03)01007-0Suche in Google Scholar

[25] Psillakis, E., & Kalogerakis, N. (2003b). Hollow-fibre liquidphase microextraction of phthalate esters from water. Journal of Chromatography A, 999, 145–153. DOI: 10.1016/S0021-9673(03)00390-X. http://dx.doi.org/10.1016/S0021-9673(03)00390-X10.1016/S0021-9673(03)00390-XSuche in Google Scholar

[26] Rasmussen, K. E., & Pedersen-Bjergaard, S. (2004). Developments in hollow fibre-based, liquid-phase microextraction. Trends in Analytical Chemistry, 23, 1–10. DOI: 10.1016/S0165-9936(04)00105-0. http://dx.doi.org/10.1016/S0165-9936(04)00105-010.1016/S0165-9936(04)00105-0Suche in Google Scholar

[27] Shen, G., & Lee, H. K. (2002). Hollow fibre-protected liquidphase microextraction of triazine herbicides. Analytical Chemistry, 74, 648–654. DOI: 10.1021/ac010561o. http://dx.doi.org/10.1021/ac010561o10.1021/ac010561oSuche in Google Scholar PubMed

[28] Sobhi, H. R., Yamini, Y., & Abadi, R. H. H. B. (2007). Extraction and determination of trace amounts of chlorpromazine in biological fluids using hollow fibre liquid phase microextraction followed by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 45, 769–774. DOI: 10.1016/j.jpba.2007.09.026. http://dx.doi.org/10.1016/j.jpba.2007.09.02610.1016/j.jpba.2007.09.026Suche in Google Scholar PubMed

[29] Sturm, S., Seger, C., Godejohann, M., Spraul, M., & Stuppner, H. (2007a). Conventional sample enrichment strategies combined with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance analysis allows analyte identification from a single minuscule Corydalis solida plant tuber. Journal of Chromatography A, 1163, 138–144. DOI: 10.1016/j.chroma.2007.06.029. http://dx.doi.org/10.1016/j.chroma.2007.06.02910.1016/j.chroma.2007.06.029Suche in Google Scholar PubMed

[30] Sturm, S., Seger, C., & Stuppner, H. (2007b). Analysis of Central European Corydalis species by nonaqueous capillary electrophoresis-electrospray ion trap mass spectrometry. Journal of Chromatography A, 1159, 42–50. DOI: 10.1016/j.chroma.2007.02.108. http://dx.doi.org/10.1016/j.chroma.2007.02.10810.1016/j.chroma.2007.02.108Suche in Google Scholar PubMed

[31] Sun, C., & Liu, H. (2008). Application of non-ionic surfactant in the microwave-assisted extraction of alkaloids from Rhizoma Coptidis. Analytica Chimica Acta, 612, 160–164. DOI: 10.1016/j.aca.2008.02.040. http://dx.doi.org/10.1016/j.aca.2008.02.04010.1016/j.aca.2008.02.040Suche in Google Scholar PubMed

[32] Wang, C., Li, C., Zang, X., Han, D., Liu, Z., & Wang, Z. (2007). Hollow fibre-based liquid-phase microextraction combined with on-line sweeping for trace analysis of Strychnos alkaloids in urine by micellar electrokinetic chromatography. Journal of Chromatography A, 1143, 270–275. DOI: 10.1016/j.chroma.2007.01.027. http://dx.doi.org/10.1016/j.chroma.2007.01.02710.1016/j.chroma.2007.01.027Suche in Google Scholar PubMed

[33] Zhu, L., Tu, C., & Lee, H. K. (2001). Liquid-phase microextraction of phenolic compounds combined with on-line preconcentration by field-amplified sample injection at low pH in micellar electrokinetic chromatography. Analytical Chemistry, 73, 5655–5660. DOI: 10.1021/ac0106602. http://dx.doi.org/10.1021/ac010660210.1021/ac0106602Suche in Google Scholar

[34] Zougagh, M., Valcarcel, M., & Ríos, A. (2004). Supercritical fluid extraction: a critical review of its analytical usefulness. Trends in Analytical Chemistry, 23, 399–405. DOI: 10.1016/S0165-9936(04)00524-2. http://dx.doi.org/10.1016/S0165-9936(04)00524-210.1016/S0165-9936(04)00524-2Suche in Google Scholar

Published Online: 2009-3-25
Published in Print: 2009-6-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
  2. A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
  3. A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
  4. Global optimization for parameter estimation of differential-algebraic systems
  5. Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
  6. Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
  7. Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
  8. A strategy for new macrocycle magnetic materials synthesis
  9. Rearrangement of N-(3-pyridyl)nitramine
  10. New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
  11. Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
  12. Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
  13. Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
  14. Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
  15. Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
  16. A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
  17. Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0019-5/html?lang=de
Button zum nach oben scrollen