Abstract
The estimation of parameters in semi-empirical models is essential in numerous areas of engineering and applied science. In many cases, these models are described by a set of ordinary-differential equations or by a set of differential-algebraic equations. Due to the presence of non-convexities of functions participating in these equations, current gradient-based optimization methods can guarantee only locally optimal solutions. This deficiency can have a marked impact on the operation of chemical processes from the economical, environmental and safety points of view and it thus motivates the development of global optimization algorithms. This paper presents a global optimization method which guarantees ɛ-convergence to the global solution. The approach consists in the transformation of the dynamic optimization problem into a nonlinear programming problem (NLP) using the method of orthogonal collocation on finite elements. Rigorous convex underestimators of the nonconvex NLP problem are employed within the spatial branch-and-bound method and solved to global optimality. The proposed method was applied to two example problems dealing with parameter estimation from time series data.
[1] Adjiman, C. S., Androulakis, I. P., & Floudas, C. A. (1998a). A global optimization method, αBB, for general twicedifferentiable constrained NLPs — II. Implementation and computational results. Computers & Chemical Engineering, 22, 1159–1179. DOI: 10.1016/S0098-1354(98)00218-X. http://dx.doi.org/10.1016/S0098-1354(98)00218-X10.1016/S0098-1354(98)00218-XSuche in Google Scholar
[2] Adjiman, C. S., Dwalling, S., Floudas, C. A, & Neumaier, A. (1998b). A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances. Computers & Chemical Engineering, 22, 1137–1158. DOI: 10.1016/S0098-1354(98)00027-1. http://dx.doi.org/10.1016/S0098-1354(98)00027-110.1016/S0098-1354(98)00027-1Suche in Google Scholar
[3] Al-Khayyal, F. A., & Falk, J. E. (1983). Jointly constrained biconvex programming. Mathematics of Operations Research, 8, 273–286. DOI: 10.1287/moor.8.2.273. http://dx.doi.org/10.1287/moor.8.2.27310.1287/moor.8.2.273Suche in Google Scholar
[4] Bard, Y. (1974). Nonlinear parameter estimation. New York: Academic Press. Suche in Google Scholar
[5] Bellman, R. (1957). Dynamic programming. New Jersey: Princeton University Press. Suche in Google Scholar
[6] Bellman, R., Jacquez, J., Kalaba R., & Schwimmer, S. (1967). Quasilinearization and estimation of chemical rate constraints from raw kinetic data. Mathematical Biosciences, 1, 71–76. DOI: 10.1016/0025-5564(67)90027-2. http://dx.doi.org/10.1016/0025-5564(67)90027-210.1016/0025-5564(67)90027-2Suche in Google Scholar
[7] Boender, C. G., & Romeijn, H. E. (1995). Stochastic methods. InHandbook of global optimization. Dortrecht: Kluwer Academic Publishers. Suche in Google Scholar
[8] Chachuat, B., & Latifi, M. A. (2002). User’s guide for Fortran global optimization code NLPGLOB. Nancy, France: CNRSENSIC. Suche in Google Scholar
[9] Cuthrell, J. E., & Biegler, L. T. (1987). On the optimization of differential-algebraic process systems. AIChE Journal, 33, 1257–1270. DOI:10.1002/aic.690330804. http://dx.doi.org/10.1002/aic.69033080410.1002/aic.690330804Suche in Google Scholar
[10] Cuthrell, J. E., & Biegler, L. T. (1989). Simultaneous optimization and solution methods for batch reactor control pro- files. Computers & Chemical Engineering, 13, 49–62. DOI: 10.1016/0098-1354(89)89006-4. http://dx.doi.org/10.1016/0098-1354(89)89006-410.1016/0098-1354(89)89006-4Suche in Google Scholar
[11] Esposito, W. R., & Floudas, C. A. (1998). A global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Industrial & Engineering Chemistry Research, 37, 1841–1858. DOI: 10.1016/S0098-1354(98)00217-8. http://dx.doi.org/10.1021/ie970852g10.1016/S0098-1354(98)00217-8Suche in Google Scholar
[12] Esposito, W. R., & Floudas, C. A. (2000). Global optimization for the parameter estimation of differential-algebraic systems. Industrial & Engineering Chemistry Research, 39, 1291–1310. DOI: 10.1021/ie990486w. http://dx.doi.org/10.1021/ie990486w10.1021/ie990486wSuche in Google Scholar
[13] Floudas, C. A. (2000). Deterministic global optimization: Theory, methods and applications. Nonconvex optimization and its applications. Dordrecht: Kluwer Academic Publishers. 10.1007/978-1-4757-4949-6Suche in Google Scholar
[14] Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gümüs, Z. H., Harding, S. T., Klepeis, J. L., Meyer, C. A., & Schweiger, C. A. (1999). Handbook of test problems in local and global optimization. Dordrecht: Kluwer Academic Publishers. 10.1007/978-1-4757-3040-1Suche in Google Scholar
[15] Horst, R., & Tuy, H. (1996). Global optimization, deterministic approaches. Berlin: Springer Verlag. 10.1007/978-3-662-03199-5Suche in Google Scholar
[16] Hwang, M., & Seinfeld, J. H. (1972). A new algorithm for the estimation of parameters in ordinary differential equations. AIChE Journal, 18, 90–93. DOI: 10.1002/aic.690180117. http://dx.doi.org/10.1002/aic.69018011710.1002/aic.690180117Suche in Google Scholar
[17] Kalogerakis, N., & Luus, R. (1983). Simplification of quasilinearization method for parameter estimation. AIChE Journal., 29, 858–864. DOI: 10.1002/aic.690290523. http://dx.doi.org/10.1002/aic.69029052310.1002/aic.690290523Suche in Google Scholar
[18] Liebman, M. J., Edgar, T. F., & Lasdon, L. S. (1992). Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques. Computers & Chemical Engineering, 16, 963–986. DOI: 10.1016/0098-1354(92)80030-D. http://dx.doi.org/10.1016/0098-1354(92)80030-D10.1016/0098-1354(92)80030-DSuche in Google Scholar
[19] Logsdon, J. S., & Biegler, L. T. (1989). Accurate solution of differential-algebraic optimization problems. Chemical Engineering Science, 28, 1628–1639. DOI: 10.1021/ie00095a010. 10.1021/ie00095a010Suche in Google Scholar
[20] Luus, R. (1998). Parameter estimation of lotka voltera problem by direct search optimization. Hungarian Journal of Industrial Chemistry, 26, 287–293. Suche in Google Scholar
[21] Maranas, C. D., & Floudas, C. A. (1994). Global minimum potential energy conformations for small molecules. Journal of Global Optimization, 4, 135–170. DOI: 10.1007/BF01096720. http://dx.doi.org/10.1007/BF0109672010.1007/BF01096720Suche in Google Scholar
[22] Maranas, C. D., & Floudas, C. A. (1995). Finding all solutions on nonlinearly constrained systems of equations. Journal of Global Optimization, 7, 143–181. DOI: 10.1007/BF01097059. http://dx.doi.org/10.1007/BF0109705910.1007/BF01097059Suche in Google Scholar
[23] McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems. Mathematical Programming, 10, 147–175. DOI: 10.1007/BF01580665. http://dx.doi.org/10.1007/BF0158066510.1007/BF01580665Suche in Google Scholar
[24] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1964). The mathematical theory of optimal processes. New York: Pergamon Press. Suche in Google Scholar
[25] The MathWorks. (2006a). Using MATLAB. Suche in Google Scholar
[26] The MathWorks. (2006b). Optimization toolbox for use with MATLAB: User’s guide. Suche in Google Scholar
[27] Tjoa, T. B., & Biegler, L. T. (1991). Simultaneous solution and optimization strategies for parameter estimation of differential algebraic equation systems. Industrial & Engineering Chemistry Research, 30, 376–385. DOI: 10.1021/ie00050a015. http://dx.doi.org/10.1021/ie00050a01510.1021/ie00050a015Suche in Google Scholar
[28] Vasantharajan, S., & Biegler, L. T. (1990). Simultaneous strategies for optimization of differential-algebraic systems with enforcement of error criteria. Computers & Chemical Engineering, 14, 1083–1100. DOI: 10.1016/0098-1354(90)85005-U. http://dx.doi.org/10.1016/0098-1354(90)85005-U10.1016/0098-1354(90)85005-USuche in Google Scholar
[29] Vassiliadis, V. S., Sargent, W. H., & Pantelides, C. C. (1994a). Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints. Industrial & Engineering Chemistry Research, 33, 2111–2122. DOI: 10.1021/ie00033a014. http://dx.doi.org/10.1021/ie00033a01410.1021/ie00033a014Suche in Google Scholar
[30] Vassiliadis, V. S., Sargent, W. H., & Pantelides, C. C. (1994b). Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Industrial & Engineering Chemistry Research, 33, 2123–2133. DOI: 10.1021/ie00033a015. http://dx.doi.org/10.1021/ie00033a01510.1021/ie00033a015Suche in Google Scholar
[31] Vemuri, Y. J. (2004). Real-time optimization of semi-batch reactors. Ph.D. thesis, The Florida State University, College of Engineering. Suche in Google Scholar
[32] Villadsen, J., & Michelsen, M. L. (1978). Solution of differential equation models by polynomial approximation. Englewood Cliffs: Prentice Hall. Suche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Artikel in diesem Heft
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media