Startseite Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares

  • Maryam Bordbar EMAIL logo , Ali Yeganeh-Faal , Jahanbakhsh Ghasemi , Mohammad Ahari-Mostafavi , Nahid Sarlak und Mohammad Baharifard
Veröffentlicht/Copyright: 25. März 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A simple, sensitive and selective spectrophotometric method for simultaneous determination of tretinoin and minoxidil using partial least square (PLS) calibration and H-point standard addition method (HPSAM) is described. The results of the H-point standard addition method show that minoxidil and tretinoin can be determined simultaneously with the concentration ratio of tretinoin to minoxidil varying from 2: 1 to 1: 33 in mixed samples. A partial least squares multivariate calibration method for the analysis of binary mixtures of tretinoin and minoxidil was also developed. The total relative standard error for applying the PLS method to eleven synthetic samples in the concentration range of 0–10 μg mL−1 tretinoin and 0–32 μg mL−1 minoxidil was 2.59 %. Both proposed methods (PLS and HPSAM) were also successfully applied in the determination of tretinoin and minoxidil in several synthetic pharmaceutical solutions.

[1] Amankwa, L., Chatten, L. G., & Pons, S. (1983). Electrochemical studies on minoxidil and its determination in tablets by differential-pulse polarography. Analyst, 108, 1221–1226. DOI: 10.1039/AN9941902123. http://dx.doi.org/10.1039/an983080122110.1039/AN9941902123Suche in Google Scholar

[2] Arcos, J., García, B., Munguia, A., & López Palacios, J. (1991). Spectrophotometric and electroanalytical study of minoxidil. Analytical Letters, 24, 357–376. DOI: 10.1080/00032719108 052912. Suche in Google Scholar

[3] Blanco, M., Coello, J., Ituriaga, H., Maspoch, S., & Redon, M. (1994). Principal component regression for mixture resolution in control analysis by UV-Visible spectrophotometry. Applied Spectroscopy, 48, 37–43. DOI: 10.1366/0003702944027633. http://dx.doi.org/10.1366/000370294402763310.1366/0003702944027633Suche in Google Scholar

[4] Bosch-Reig, F., & Campíns-Falcó, P. (1988). H-point standard additions method. Part 1. Fundamentals and application to analytical spectroscopy. Analyst, 113, 1011–1016. DOI: 10.1039/AN9881301011. http://dx.doi.org/10.1039/an988130101110.1039/AN9881301011Suche in Google Scholar

[5] Bosch-Reig, F., Campíns-Falcó, P., Sevillano-Cabeza, A., Herráez-Hernández, B., & Molins-Legua, C. (1991). Development of the H-point standard-additions method for ultraviolet-visible spectroscopic kinetic analysis of two-component systems. Analytical Chemistry, 63, 2424–2429. DOI: 10.1021/ac00021a008. http://dx.doi.org/10.1021/ac00021a00810.1021/ac00021a008Suche in Google Scholar

[6] Bosch-Reig, F., Campíns-Falcó, P., & Verdú-Andrés, J. (1992a). Application of the H-point standard additions method by using absorbance increment values as analytical signals. Talanta, 39, 1–7. DOI: 10.1016/0039-9140(92)80042-C. http://dx.doi.org/10.1016/0039-9140(92)80131-V10.1016/0039-9140(92)80042-CSuche in Google Scholar

[7] Bosch-Reig, F., Campíns-Falcó, P., Herráez-Hernández, B., & Sevillano-Cabeza, A. (1992b). Development of the H-point standard additions method for coupled liquid chromatography and UV-visible spectrophotometry. Analytica Chimica Acta, 257, 89–98. DOI: 10.1016/0003-2670(92)80154-Y. http://dx.doi.org/10.1016/0003-2670(92)80154-Y10.1016/0003-2670(92)80154-YSuche in Google Scholar

[8] Bosch-Reig, F., Campíns-Falcó, P., & Verdú-Andrés, J. (1992c). Evaluation and elimination of the “blank bias error” using the H-point standard addition method: Application to spectrophotometric determinations using absorbent blank. Analytica Chimica Acta, 270, 253–265. DOI: 10.1016/0003-2670(92)80115-N. http://dx.doi.org/10.1016/0003-2670(92)80115-N10.1016/0003-2670(92)80115-NSuche in Google Scholar

[9] Bosch-Reig, F., Campíns-Falcó, P., & Verdú-Andrés, J. (1993). Development of the H-point standard additions method for analyte determinations in unknown matrix: Location of linear matrix spectral interval. Analytica Chimica Acta, 283, 831–844. DOI: 10.1016/0003-2670(93)85297-W. http://dx.doi.org/10.1016/0003-2670(93)85297-W10.1016/0003-2670(93)85297-WSuche in Google Scholar

[10] Bosch-Reig, F., Campíns-Falcó, P., Verdú-Andrés, J., & Molins-Legua, C. (1994a). Study of the behaviour of the absorbent blanks in analytical procedures by using the H-Point standard additions method (HPSAM). Talanta, 41, 39–52. DOI: 10.1016/0039-9140(94)80166-5. http://dx.doi.org/10.1016/0039-9140(94)80166-510.1016/0039-9140(94)80166-5Suche in Google Scholar

[11] Bosch-Reig, F., Campíns-Falcó, P., Sevillano-Cabeza, A., & Molins-Legua, C. (1994b). Determination of amphetamine and methamphetamine in urine with sodium 1,2 naphthoquinone 4-sulphonate using the H-point standard addition method. Analytica Chimica Acta, 287, 41–48. DOI: 10.1016/0003-2670(94)85099-2. http://dx.doi.org/10.1016/0003-2670(94)85099-210.1016/0003-2670(94)85099-2Suche in Google Scholar

[12] Bosch-Reig, F., Campíns-Falcó, P., & Verdú-Andrés, J. (1994c). Development of the H-point standard additions method for the use of spectrofluorimetry and synchronous spectrofluorimetry. Analyst, 119, 2123–2127. DOI: 10.1039/AN9941902123. http://dx.doi.org/10.1039/an994190212310.1039/AN9941902123Suche in Google Scholar

[13] Bosch-Reig, F., Campíns-Falcó, P., Sevillano-Cabeza, A., & Molins-Legua, C. (1995). Generalized H-point standard additions method for analyte determinations in unknown samples. Analytica Chimica Acta, 302, 323–333. DOI: 10.1016/0003-2670(94)00496-9. http://dx.doi.org/10.1016/0003-2670(94)00496-910.1016/0003-2670(94)00496-9Suche in Google Scholar

[14] Boyd, A. S. (1989). An overview of the retinoids. The American Journal of Medicine, 86, 568–574. DOI: 10.1016/0002-9343(89)90386-0. http://dx.doi.org/10.1016/0002-9343(89)90386-010.1016/0002-9343(89)90386-0Suche in Google Scholar

[15] Brown, S. D., Barker, T. Q., Lerivee, R. J., Monfre, S. L., & Wilk, H. R. (1988). Chemometrics. Analytical Chemistry, 60, 252R–273R. DOI: 10.1021/ac00163a018. http://dx.doi.org/10.1021/ac00163a01810.1021/ac00163a018Suche in Google Scholar

[16] Campíns-Falcó, P., Blasco Gómez, F. & Bosch-Reig, F. (1998). The H-point and generalized H-point standard additions methods for flow injection procedures. Talanta, 47, 193–202. DOI: 10.1016/S0039-9140(98)00067-8. http://dx.doi.org/10.1016/S0039-9140(98)00067-810.1016/S0039-9140(98)00067-8Suche in Google Scholar

[17] Chen, Y.-C., Luo, D., & Tang, X.-Z. (2000). Determination of two components in compound minoxidil liniment by UV spectrophotometry. West China Journal of Pharmaceutical Sciences, 15, 62–63. Suche in Google Scholar

[18] Despagne, F., Masart, D., & Noord, C. E. (1997). Optimization of partial-least-squares calibration models by simulation of instrumental perturbations. Analytical Chemistry, 69, 3391–3399. DOI: 10.1021/ac970228d. http://dx.doi.org/10.1021/ac970228d10.1021/ac970228dSuche in Google Scholar

[19] Fanali, S., Cristalli, M., & Catellani, P. (1987). Determination of minoxidil in pharmaceutical forms by capillary isotachophoresis. Journal of Chromatography A, 405, 385–388. DOI: 10.1016/S0021-9673(01)81781-7. http://dx.doi.org/10.1016/S0021-9673(01)81781-710.1016/S0021-9673(01)81781-7Suche in Google Scholar

[20] Ferry, J. J., Forbes, K. K., VanderLugt, J. T., & Szpunar, G. J. (1990). Influence of tretinoin on the percutaneous absorption of minoxidil from an aqueous topical solution. Clinical Pharmacology & Therapeutics, 47, 439–442. 10.1038/clpt.1990.55Suche in Google Scholar

[21] Frank, I. E., Feikema, J., Constantine, N., & Kowalski, B. R. (1984). Prediction of product quality from Spectral data using the partial least-squares method. Journal of Chemical Information and Computer Sciences, 24, 20–24. DOI: 10.1021/ci00041a602. 10.1021/ci00041a602Suche in Google Scholar

[22] Gaillard, Y., & Pépin, G. (1997). Use of high-performance liquid chromatography with photodiode-array UV detection for the creation of a 600-compound library application to forensic toxicology. Journal of Chromatography A, 763, 149–163. DOI: 10.1016/S0021-9673(96)00706-6. http://dx.doi.org/10.1016/S0021-9673(96)00706-610.1016/S0021-9673(96)00706-6Suche in Google Scholar

[23] Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17. DOI: 10.1016/0003-2670(86)80028-9. http://dx.doi.org/10.1016/0003-2670(86)80028-910.1016/0003-2670(86)80028-9Suche in Google Scholar

[24] Gerlach, R. W., Kowalski, B. R., & Wold, H. (1979). Partial least-squares path modelling with latent variables. Analytica Chimica Acta, 112, 417–421. DOI: 10.1016/S0003-2670(01)85039-X. http://dx.doi.org/10.1016/S0003-2670(01)85039-X10.1016/S0003-2670(01)85039-XSuche in Google Scholar

[25] Haaland, D. M., & Thomas, E. V. (1988a). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60, 1193–1202. DOI: 10.1021/ac00162a020. http://dx.doi.org/10.1021/ac00162a02010.1021/ac00162a020Suche in Google Scholar

[26] Haaland, D. M., & Thomas, E. V. (1988b). Partial least-squares methods for spectral analyses. 2. Application to simulated and glass spectral data. Analytical Chemistry, 60, 1202–1208. DOI: 10.1021/ac00162a021. http://dx.doi.org/10.1021/ac00162a02110.1021/ac00162a021Suche in Google Scholar

[27] Hargis, L. G., & Howell, J. A. (1988). Ultraviolet and light absorption spectrometry. Analytical Chemistry, 60, 131R–146R. DOI: 10.1021/ac00163a010. http://dx.doi.org/10.1021/ac00163a01010.1021/ac00163a010Suche in Google Scholar

[28] Jöreskog, K. G., & Wold, H. O. A. (Eds.) (1982). System under indirect observation: casuality, structure, prediction (pp.110–125). Amsterdam: North Holland Publishing Company. Suche in Google Scholar

[29] Lauer, A. C. (1999). Percutaneous drug delivery to the hair follicle. In R. L. Bronaugh, and H. I. Maibach (Eds.), Percutaneous absorption, drugs-cosmetics-mechanisms-methodology (3rd ed.) (pp. 427–450). New York: Marcel Dekker, Inc. Suche in Google Scholar

[30] Lauer, A. C., Lieb, L. M., Ramachandran, C., Flynn, G. L., & Weiner, N. D. (1995). Transfollicular drug delivery. Pharmaceutical Research, 12, 179–186. DOI: 10.1023/A:1016250422596. http://dx.doi.org/10.1023/A:101625042259610.1023/A:1016250422596Suche in Google Scholar

[31] Law, N., & Appleby, J. R. G. (1996). Re-evaluation of strong cation-exchange high-performance liquid chromatography for the analysis of basic drugs. Journal of Chromatography A, 725, 335–341. DOI: 10.1016/0021-9673(95)01002-5. http://dx.doi.org/10.1016/0021-9673(95)01002-510.1016/0021-9673(95)01002-5Suche in Google Scholar

[32] London-Wong, D. M., & Hart, L. L. (1990). Minoxidil with tretinoin in baldness. The Annals of Pharmacotherapy, 24, 43–44. 10.1177/106002809002400110Suche in Google Scholar PubMed

[33] Mahrous, M. S., Abdel-Khalek, M. M., & Beltagy, Y. A. (1992). Simultaneous quantitation of minoxidil and tretinoin in magistral and pharmaceutical preparations by first derivative spectrophotometry. Analytical Letters, 25, 1673–1686. DOI: 10.1080/00032719208018242. 10.1080/00032719208018242Suche in Google Scholar

[34] Otto, M., & Wegscheider, W. (1985). Spectrophotometric multicomponent analysis applied to trace metal determinations. Analytical Chemistry, 57, 63–69. DOI: 10.1021/ac00279a020. http://dx.doi.org/10.1021/ac00279a02010.1021/ac00279a020Suche in Google Scholar

[35] Perez-Bendito, D., & Silva, M. (1998). Kinetic methods in analytical chemistry (pp. 150). Chichester: Ellis Horwood. Suche in Google Scholar

[36] Rougier, A., & Lotte, C. (1993). Predictive approaches I: The stripping technique. In V. P. Shah, and H. I. Maibach (Eds.), Topical drug bioavailability, bioequivalence and penetration (pp. 163–182). New York: Plenum Press. Suche in Google Scholar

[37] Royer, M. E., Ko, H., Gilbertson, T. J., McCall, J. M., & Johnston, K. T. (1977). Radioimmunoassay of minoxidil in human serum. Journal of Pharmaceutical Sciences, 66, 1266–1269. DOI: 10.1002/jps.2600660915. http://dx.doi.org/10.1002/jps.260066091510.1002/jps.2600660915Suche in Google Scholar

[38] Safavi, A., Abdollahi, H., Sedaghatpour, F., & Zeinali, S. (2000). Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by the H-point standard addition method. Analytica Chimica Acta, 409, 275–282. DOI: 10.1016/S0003-2670(99)00868-5. http://dx.doi.org/10.1016/S0003-2670(99)00868-510.1016/S0003-2670(99)00868-5Suche in Google Scholar

[39] Spiegelman, C. H., McShane, M. J., Goetz, M. J., Motamedi, M., Yue, Q. L., & Coté, G. L. (1998). Theoretical justification of wavelength selection in PLS calibration: Development of a new algorithm. Analytical Chemistry, 70, 35–44. DOI: 10.1021/ac9705733. http://dx.doi.org/10.1021/ac970573310.1021/ac9705733Suche in Google Scholar

[40] Tracqui, A., Kintz, P., & Mangin, P. (1995). Systematic toxicological analysis using HPLC/DAD. Journal of Forensic Science, 40, 254–262. 10.1520/JFS15353JSuche in Google Scholar

[41] Trotta, M., Ugazio, E., Peira, E., & Pulitano, C. (2003). Influence of ion pairing on topical delivery of retinoic acid from microemulsions. Journal of Controlled Release, 86, 315–321. DOI: 10.1016/S0168-3659(02)00416-9. http://dx.doi.org/10.1016/S0168-3659(02)00416-910.1016/S0168-3659(02)00416-9Suche in Google Scholar

[42] Van de Vaart, F. J., Indemans, A. W. M., Hulshoff, A., & Lake, O. A. (1982). The application of chromatography to the analysis of pharmaceutical creams. Chromatographia, 16, 247–250. DOI: 10.1007/BF02258912. http://dx.doi.org/10.1007/BF0225891210.1007/BF02258912Suche in Google Scholar

[43] Wang, L. H. (2000). Simultaneous determination of retinal, retinol and retinoic acid (all-trans and 13-cis) in cosmetics and pharmaceuticals at electrodeposited metal electrodes. Analytica Chimica Acta, 415, 193–200. DOI: 10.1016/S0003-2670(00)00870-9. http://dx.doi.org/10.1016/S0003-2670(00)00870-910.1016/S0003-2670(00)00870-9Suche in Google Scholar

[44] Weiner, N. (1998). Targeted follicular delivery of macromolecules via liposomes. International Journal of Pharmaceutics, 162, 29–38. DOI: 10.1016/S0378-5173(97)00409-2. http://dx.doi.org/10.1016/S0378-5173(97)00409-210.1016/S0378-5173(97)00409-2Suche in Google Scholar

Published Online: 2009-3-25
Published in Print: 2009-6-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
  2. A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
  3. A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
  4. Global optimization for parameter estimation of differential-algebraic systems
  5. Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
  6. Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
  7. Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
  8. A strategy for new macrocycle magnetic materials synthesis
  9. Rearrangement of N-(3-pyridyl)nitramine
  10. New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
  11. Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
  12. Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
  13. Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
  14. Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
  15. Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
  16. A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
  17. Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0003-0/html?lang=de
Button zum nach oben scrollen