Startseite Rearrangement of N-(3-pyridyl)nitramine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rearrangement of N-(3-pyridyl)nitramine

  • Grzegorz Spaleniak EMAIL logo , Zdzisław Daszkiewicz und Janusz Kyzioł
Veröffentlicht/Copyright: 25. März 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Contrary to other N-(pyridyl)nitramines, the title compound cannot be rearranged to 3-amino-2-nitropyridine or other isomers. Hypothetical products of its transformation under influence of concentrated sulphuric acid, viz. 3-hydroxypyridine, 3,3′-azoxypyridine and 3,3′-azopyridine, were obtained from 3-nitro- and 3-aminopyridine in oxidation and reduction reactions. N-(3-Pyridyl)nitramine was prepared and rearranged in concentrated sulphuric acid. 3-Hydroxypyridine and 3,3′-azoxypyridine were isolated from the reaction mixture, other products were identified by the HPLC and GCMS methods. The results indicate that N-(3-pyridyl)hydroxylamine is an intermediate formed from N-(3-pyridyl)nitramine under the influence of concentrated sulphuric acid. The reaction path, leading to the final products, is discussed in context of the mechanism of nitramine rearrangement.

[1] Adam, W., Curci, R., & Edwards, J. O. (1989). Dioxiranes: a new class of powerful oxidants. Accounts of Chemical Research, 22, 205–211. DOI: 10.1021/ar00162a002. http://dx.doi.org/10.1021/ar00162a00210.1021/ar00162a002Suche in Google Scholar

[2] Bakke, J. M., & Ranes, E. (1997). Nitration of pyridine by dinitrogen pentoxide, a study of the reaction mechanism. Journal of the Chemical Society, Perkin Transactions 2, 1997, 1919–1923. DOI: 10.1039/a703079g. 10.1039/a703079gSuche in Google Scholar

[3] Bakke, J. M., & Riha, J. (1999). Nitration of pyridine compounds. The reaction of N-nitro-1,4-dihydro-4-pyridinesulfonic acid. Acta Chemica Scandinavica, 53, 356–359. DOI: 10.3891/acta.chem.scand.53-0356. http://dx.doi.org/10.3891/acta.chem.scand.53-035610.3891/acta.chem.scand.53-0356Suche in Google Scholar

[4] Brown, E. V., & Granneman, G. R. (1975). Cis-trans isomerism in the pyridyl analogs of azobenzene. A kinetic and molecular orbital analysis. Journal of the American Chemical Society, 97, 621–627. DOI: 10.1021/ja00836a025. http://dx.doi.org/10.1021/ja00836a02510.1021/ja00836a025Suche in Google Scholar

[5] Brownstein, S., Bunton, C. A., & Hughes, E. D. (1956). The intramolecular rearrangement of phenylnitramine, and the benzidine and semidine changes. Chemistry & Industry, 1956, 981. Suche in Google Scholar

[6] Brownstein, S., Bunton, C. A., & Hughes, E. D. (1958). The rearrangement of aromatic N-nitroamines. Part II. Isotopic test for intramolecular character in the nitro-transfer from sidechain to ortho- and para-positions. Journal of the Chemical Society, 883, 4354–4357. DOI: 10.1039/JR9580004354. 10.1039/jr9580004354Suche in Google Scholar

[7] Campbell, N., Henderson, A. W., & Taylor, D. (1953). Geometrical isomerism of azo-compounds. Journal of the Chemical Society, 257, 1281–1285. DOI: 10.1039/JR9530001281. 10.1039/jr9530001281Suche in Google Scholar

[8] Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1964). Introduction to infrared and Raman spectroscopy. New York: Academic Press. Suche in Google Scholar

[9] Czuba, W. (1960a). Badania nad przegrupowaniem pochodnych podstawionych w pierścieniu 3-N-nitroaminopirydyny. I. Chloro-3-nitroaminopirydyna. Roczniki Chemii, 34, 905–915. Suche in Google Scholar

[10] Czuba, W. (1960b). Badania nad przegrupowaniem pochodnych podstawionych w pierścieniu 3-N-nitroaminopirydyny. II. Roczniki Chemii, 34, 1639–1645. Suche in Google Scholar

[11] Czuba, W., & Poradowska, H. (1970). Póby ustalenia struktury 3-N-nitroaminopirydyny i jej pochodnych na podstawie widm w nadfiolecie i podczerwieni. Roczniki Chemii, 44, 1447–1457. Suche in Google Scholar

[12] Daszkiewicz, Z., Domański, A. A., & Kyzioł, J. B. (1997). Thermal rearrangement of pyridylnitramines. Chemical Papers, 51, 22–28. Suche in Google Scholar

[13] Daszkiewicz, Z., Nowakowska, E. M., & Kyzioł, J. B. (1998). By-products in the rearrangement of N-methyl-N-phenylnitramine. Tetrahedron, 54, 5991–6000. DOI: 10.1016/S0040-4020(98)00279-8. http://dx.doi.org/10.1016/S0040-4020(98)00279-810.1016/S0040-4020(98)00279-8Suche in Google Scholar

[14] Deady, L. W., Grimmett, M. R., & Potts, C. H. (1979). Studies on the mechanism of the nitraminopyridine rearrangement. Tetrahedron, 35, 2895–2900. DOI: 10.1016/S0040-4020(01)99505-5. http://dx.doi.org/10.1016/S0040-4020(01)99505-510.1016/S0040-4020(01)99505-5Suche in Google Scholar

[15] Deady, L. W., & Korytsky, O. L. (1983). The effect of acid concentration on the pyridine nitramine rearrangement: an N.M.R. study. Australian Journal of Chemistry, 36, 1159–1166. DOI: 10.1071/CH9831159. http://dx.doi.org/10.1071/CH983115910.1071/CH9831159Suche in Google Scholar

[16] De Kowalewski, D. G., & De Los Santos, C. (1990). 1H and 13C NMR study of substituted 3-OH pyridines. Journal of Molecular Structure, 221, 299–308. DOI: 10.1016/0022-2860(90)80414-F. http://dx.doi.org/10.1016/0022-2860(90)80414-F10.1016/0022-2860(90)80414-FSuche in Google Scholar

[17] Easmon, J., Heinisch, G., Pürstinger, G., Langer, T., Österreicher, J. K., Grunicke, H. H., & Hofmann, J. (1997). Azinyl and diazinyl hydrazones derived from aryl N-heteroaryl ketones: Synthesis and antiproliferative activity. Journal of Medical Chemistry, 40, 4420–4425. DOI: 10.1021/jm970255w. http://dx.doi.org/10.1021/jm970255w10.1021/jm970255wSuche in Google Scholar

[18] Friedl, F. (1913). Über das β-Nitropyridin und einige seiner Reduktionsprodukte. Monatshefte für Chemie, 34, 759–767. DOI: 10.1007/BF01518296. http://dx.doi.org/10.1007/BF0151829610.1007/BF01518296Suche in Google Scholar

[19] Gawinecki, R., Kolehmainen, E., Rasała, D., & Suontamo, R. (1995). The tautomerism of nitraminopyridines. Journal of Physical Organic Chemistry, 8, 689–695. DOI: 10.1002/poc.610081007. http://dx.doi.org/10.1002/poc.61008100710.1002/poc.610081007Suche in Google Scholar

[20] Hauck, A. E., & Giam C. S. (1978). Reinvestigation of the reaction of Caro’s acid with 3-aminopyridine. An improved synthesis and characterization of 3,3′-azoxypyridine. Synthetic Communications, 8, 109–115. DOI: 10.1080/00397917808062104. http://dx.doi.org/10.1080/0039791780806210410.1080/00397917808062104Suche in Google Scholar

[21] Hodgson, H. H., Mahadevan, A. P., & Ward, E. R. (1964). 1,4-Dinitronaphtalene. Organic Syntheses, Collective Volume 3, 341–343. Suche in Google Scholar

[22] Huisgen, R., & Bast, K. (1962). Indazole. Organic Syntheses, 42, 69. Suche in Google Scholar

[23] Kirpal, A., & Reiter, E. (1925). 3-Nitro-pyridin und seine Derivate. Berichte der Deutschen Chemischen Gesellschaft, 58, 699–701. DOI: 10.1002/cber.19250580413. http://dx.doi.org/10.1002/cber.1925058041310.1002/cber.19250580413Suche in Google Scholar

[24] Kohata, K., Kawamonzen, Y., Odashima, T., & Ishii, H. (1990). Synthesis and chromogenic properties of some water-soluble 5-nitro-2-pyridylhydrazones. Bulletin of the Chemical Society of Japan, 63, 3398–3404. DOI: 10.1246/bcsj.63.3398. http://dx.doi.org/10.1246/bcsj.63.339810.1246/bcsj.63.3398Suche in Google Scholar

[25] Kolehmainen, E., Laihia, K., Kauppinen, R., Gawinecki, R., & Rasala, D. (1993). Nitramino, NRNO2 (R = H, CH3), as a substituent. 13C and 15N NMR spectroscopic study of nitraminobenzenes and -pyridines. Magnetic Resonance in Chemistry, 31, 659–664. DOI: 10.1002/mrc.1260310711. http://dx.doi.org/10.1002/mrc.126031071110.1002/mrc.1260310711Suche in Google Scholar

[26] Kyzioł, J. B., Broda, M. A., Zaleski, J., & Daszkiewicz, Z. (2002). Structure and properties of N-methyl-N-(4-pyridyl)-nitramine and 1,4-dihydro-1-methyl-4-nitriminopyridine. Journal of Molecular Structure, 605, 157–169. DOI: 10.1016/S0022-2860(01)00757-8. http://dx.doi.org/10.1016/S0022-2860(01)00757-810.1016/S0022-2860(01)00757-8Suche in Google Scholar

[27] Mizroni, R. H. (1961) Nitropyridines and their reduction products (except amines). In E. Klingsberg (Ed.), Chemistry of Heterocyclic Compounds: Pyridine and its Derivatives. Part Two, Vol. 14 (pp. 469–545). New York: Interscience Publishers, Inc. DOI: 10.1002/9780470186657. 10.1002/9780470186657Suche in Google Scholar

[28] Orton, K. J. P., & Smith, A. E. (1905). Transformations of highly substituted nitroaminobenzenes. Journal of the Chemical Society, Transactions, 87, 389–397. DOI: 10.1039/CT9058700389. http://dx.doi.org/10.1039/ct905870038910.1039/CT9058700389Suche in Google Scholar

[29] Pasternak, E. E., & Tomasik, P. (1978). Syntheses with aromatic nitramines. IV. The effect of the reaction conditions on acid-catalyzed rearrangement of 2-nitraminopyridine. Bulletin de L’Académie Polonaise des Sciences, Série des Sciences Chemiques, 26, 417–421. Suche in Google Scholar

[30] Płażek, E., Marcinków, A., & Stammer, C. (1928). Badania nad 3-aminopirydyną. II. Pochodne metylowane, acetyloaminopirydyny, formyloaminopirydyny. Roczniki Chemii, 15, 365–377. Suche in Google Scholar

[31] Potts, K. T., & Surapaneni, C. R. (1970). 1,2,4-Triazoles. XXV. The effect of pyridine substitution on the isomerization of striazolo[4,3-a]pyridines into s-triazolo[1,5-a]pyridines. Journal of Heterocyclic Chemistry, 7, 1019–1027. http://dx.doi.org/10.1002/jhet.557007050410.1002/jhet.5570070504Suche in Google Scholar

[32] Raeth, C. (1931). Zur Kenntnis des 3-Amino-pyridins. X. Mitteilung über Derivate des pyridins von A. Binz und C. Räh. Justus Liebig’s Annalen der Chemie, 486, 95–106. DOI: 10.1002/jlac.19314860106. http://dx.doi.org/10.1002/jlac.1931486010610.1002/jlac.19314860106Suche in Google Scholar

[33] Sandler, S. R., & Caro, W. (1972). Organic functional group preparations. Vol. 2 (pp. 286–342). New York: Academic Press. Suche in Google Scholar

[34] Sankararaman, S. (2005). Pericyclic reactions (p. 225). Weinheim: Wiley-VCH Verlag. Suche in Google Scholar

[35] Starkey, E. B. (1963). p-Dinitrobenzene. Organic Syntheses, Collective Volume 2, 225–229. Suche in Google Scholar

[36] Talik, T., & Talik, Z. (1967). Studies on derivatives of nitraminopyridines. Part I. Reaction with hydrazine. Roczniki Chemii, 41, 483–492. Suche in Google Scholar

[37] Tomasik, P. (1970). Application of Hammett equation to 2,5-disubstituted pyridine derivatives. Part I. Determination of [σ] constants for substituents X in a series of pyridine derivatives on the basic of polarographic studies of p-X-nitrobenzenes and 2-X-5-nitropyridines. Roczniki Chemii, 44, 341–354. Suche in Google Scholar

[38] Tomcufcik, A. S., & Starker, L. N. (1962). Aminopyridines. In E. Klingsberg (Ed.), Chemistry of heterocyclic compounds: Pyridine and its derivatives. Part 3, Vol. 14, (pp. 1–177). New York: Interscience Publishers, Inc. DOI: 10.1002/9780470186671. 10.1002/9780470186671Suche in Google Scholar

[39] Tschitschibabin, A. E., & Kirssanow, A. V. (1927). Nitramine der Pyridin-Reihe: β-Nitramino-pyridin. Berichte der Deutschen Chemischen Gesellschaft, 60, 2433–2438. DOI: 10.1002/cber.19270601108. http://dx.doi.org/10.1002/cber.1927060110810.1002/cber.19270601108Suche in Google Scholar

[40] von Schickh, O., Binz, A., & Schultz, A. (1936). Derivate des 3-Amino-pyridins. Berichte der Deutschen Chemischen Gesellschaft, 69, 2593–2605. DOI: 10.1002/cber.19360691202. http://dx.doi.org/10.1002/cber.1936069120210.1002/cber.19360691202Suche in Google Scholar

[41] White, W. N., White, H. S., & Fentiman, A. (1976). The acidcatalyzed nitramine rearrangement. 8. Solvent viscosity effects. Journal of Organic Chemistry, 41, 3166–3170. DOI: 10.1021/jo00881a022. http://dx.doi.org/10.1021/jo00881a02210.1021/jo00881a022Suche in Google Scholar

Published Online: 2009-3-25
Published in Print: 2009-6-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
  2. A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
  3. A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
  4. Global optimization for parameter estimation of differential-algebraic systems
  5. Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
  6. Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
  7. Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
  8. A strategy for new macrocycle magnetic materials synthesis
  9. Rearrangement of N-(3-pyridyl)nitramine
  10. New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
  11. Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
  12. Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
  13. Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
  14. Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
  15. Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
  16. A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
  17. Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0099-7/pdf?lang=de
Button zum nach oben scrollen