Abstract
Contrary to other N-(pyridyl)nitramines, the title compound cannot be rearranged to 3-amino-2-nitropyridine or other isomers. Hypothetical products of its transformation under influence of concentrated sulphuric acid, viz. 3-hydroxypyridine, 3,3′-azoxypyridine and 3,3′-azopyridine, were obtained from 3-nitro- and 3-aminopyridine in oxidation and reduction reactions. N-(3-Pyridyl)nitramine was prepared and rearranged in concentrated sulphuric acid. 3-Hydroxypyridine and 3,3′-azoxypyridine were isolated from the reaction mixture, other products were identified by the HPLC and GCMS methods. The results indicate that N-(3-pyridyl)hydroxylamine is an intermediate formed from N-(3-pyridyl)nitramine under the influence of concentrated sulphuric acid. The reaction path, leading to the final products, is discussed in context of the mechanism of nitramine rearrangement.
[1] Adam, W., Curci, R., & Edwards, J. O. (1989). Dioxiranes: a new class of powerful oxidants. Accounts of Chemical Research, 22, 205–211. DOI: 10.1021/ar00162a002. http://dx.doi.org/10.1021/ar00162a00210.1021/ar00162a002Suche in Google Scholar
[2] Bakke, J. M., & Ranes, E. (1997). Nitration of pyridine by dinitrogen pentoxide, a study of the reaction mechanism. Journal of the Chemical Society, Perkin Transactions 2, 1997, 1919–1923. DOI: 10.1039/a703079g. 10.1039/a703079gSuche in Google Scholar
[3] Bakke, J. M., & Riha, J. (1999). Nitration of pyridine compounds. The reaction of N-nitro-1,4-dihydro-4-pyridinesulfonic acid. Acta Chemica Scandinavica, 53, 356–359. DOI: 10.3891/acta.chem.scand.53-0356. http://dx.doi.org/10.3891/acta.chem.scand.53-035610.3891/acta.chem.scand.53-0356Suche in Google Scholar
[4] Brown, E. V., & Granneman, G. R. (1975). Cis-trans isomerism in the pyridyl analogs of azobenzene. A kinetic and molecular orbital analysis. Journal of the American Chemical Society, 97, 621–627. DOI: 10.1021/ja00836a025. http://dx.doi.org/10.1021/ja00836a02510.1021/ja00836a025Suche in Google Scholar
[5] Brownstein, S., Bunton, C. A., & Hughes, E. D. (1956). The intramolecular rearrangement of phenylnitramine, and the benzidine and semidine changes. Chemistry & Industry, 1956, 981. Suche in Google Scholar
[6] Brownstein, S., Bunton, C. A., & Hughes, E. D. (1958). The rearrangement of aromatic N-nitroamines. Part II. Isotopic test for intramolecular character in the nitro-transfer from sidechain to ortho- and para-positions. Journal of the Chemical Society, 883, 4354–4357. DOI: 10.1039/JR9580004354. 10.1039/jr9580004354Suche in Google Scholar
[7] Campbell, N., Henderson, A. W., & Taylor, D. (1953). Geometrical isomerism of azo-compounds. Journal of the Chemical Society, 257, 1281–1285. DOI: 10.1039/JR9530001281. 10.1039/jr9530001281Suche in Google Scholar
[8] Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1964). Introduction to infrared and Raman spectroscopy. New York: Academic Press. Suche in Google Scholar
[9] Czuba, W. (1960a). Badania nad przegrupowaniem pochodnych podstawionych w pierścieniu 3-N-nitroaminopirydyny. I. Chloro-3-nitroaminopirydyna. Roczniki Chemii, 34, 905–915. Suche in Google Scholar
[10] Czuba, W. (1960b). Badania nad przegrupowaniem pochodnych podstawionych w pierścieniu 3-N-nitroaminopirydyny. II. Roczniki Chemii, 34, 1639–1645. Suche in Google Scholar
[11] Czuba, W., & Poradowska, H. (1970). Póby ustalenia struktury 3-N-nitroaminopirydyny i jej pochodnych na podstawie widm w nadfiolecie i podczerwieni. Roczniki Chemii, 44, 1447–1457. Suche in Google Scholar
[12] Daszkiewicz, Z., Domański, A. A., & Kyzioł, J. B. (1997). Thermal rearrangement of pyridylnitramines. Chemical Papers, 51, 22–28. Suche in Google Scholar
[13] Daszkiewicz, Z., Nowakowska, E. M., & Kyzioł, J. B. (1998). By-products in the rearrangement of N-methyl-N-phenylnitramine. Tetrahedron, 54, 5991–6000. DOI: 10.1016/S0040-4020(98)00279-8. http://dx.doi.org/10.1016/S0040-4020(98)00279-810.1016/S0040-4020(98)00279-8Suche in Google Scholar
[14] Deady, L. W., Grimmett, M. R., & Potts, C. H. (1979). Studies on the mechanism of the nitraminopyridine rearrangement. Tetrahedron, 35, 2895–2900. DOI: 10.1016/S0040-4020(01)99505-5. http://dx.doi.org/10.1016/S0040-4020(01)99505-510.1016/S0040-4020(01)99505-5Suche in Google Scholar
[15] Deady, L. W., & Korytsky, O. L. (1983). The effect of acid concentration on the pyridine nitramine rearrangement: an N.M.R. study. Australian Journal of Chemistry, 36, 1159–1166. DOI: 10.1071/CH9831159. http://dx.doi.org/10.1071/CH983115910.1071/CH9831159Suche in Google Scholar
[16] De Kowalewski, D. G., & De Los Santos, C. (1990). 1H and 13C NMR study of substituted 3-OH pyridines. Journal of Molecular Structure, 221, 299–308. DOI: 10.1016/0022-2860(90)80414-F. http://dx.doi.org/10.1016/0022-2860(90)80414-F10.1016/0022-2860(90)80414-FSuche in Google Scholar
[17] Easmon, J., Heinisch, G., Pürstinger, G., Langer, T., Österreicher, J. K., Grunicke, H. H., & Hofmann, J. (1997). Azinyl and diazinyl hydrazones derived from aryl N-heteroaryl ketones: Synthesis and antiproliferative activity. Journal of Medical Chemistry, 40, 4420–4425. DOI: 10.1021/jm970255w. http://dx.doi.org/10.1021/jm970255w10.1021/jm970255wSuche in Google Scholar
[18] Friedl, F. (1913). Über das β-Nitropyridin und einige seiner Reduktionsprodukte. Monatshefte für Chemie, 34, 759–767. DOI: 10.1007/BF01518296. http://dx.doi.org/10.1007/BF0151829610.1007/BF01518296Suche in Google Scholar
[19] Gawinecki, R., Kolehmainen, E., Rasała, D., & Suontamo, R. (1995). The tautomerism of nitraminopyridines. Journal of Physical Organic Chemistry, 8, 689–695. DOI: 10.1002/poc.610081007. http://dx.doi.org/10.1002/poc.61008100710.1002/poc.610081007Suche in Google Scholar
[20] Hauck, A. E., & Giam C. S. (1978). Reinvestigation of the reaction of Caro’s acid with 3-aminopyridine. An improved synthesis and characterization of 3,3′-azoxypyridine. Synthetic Communications, 8, 109–115. DOI: 10.1080/00397917808062104. http://dx.doi.org/10.1080/0039791780806210410.1080/00397917808062104Suche in Google Scholar
[21] Hodgson, H. H., Mahadevan, A. P., & Ward, E. R. (1964). 1,4-Dinitronaphtalene. Organic Syntheses, Collective Volume 3, 341–343. Suche in Google Scholar
[22] Huisgen, R., & Bast, K. (1962). Indazole. Organic Syntheses, 42, 69. Suche in Google Scholar
[23] Kirpal, A., & Reiter, E. (1925). 3-Nitro-pyridin und seine Derivate. Berichte der Deutschen Chemischen Gesellschaft, 58, 699–701. DOI: 10.1002/cber.19250580413. http://dx.doi.org/10.1002/cber.1925058041310.1002/cber.19250580413Suche in Google Scholar
[24] Kohata, K., Kawamonzen, Y., Odashima, T., & Ishii, H. (1990). Synthesis and chromogenic properties of some water-soluble 5-nitro-2-pyridylhydrazones. Bulletin of the Chemical Society of Japan, 63, 3398–3404. DOI: 10.1246/bcsj.63.3398. http://dx.doi.org/10.1246/bcsj.63.339810.1246/bcsj.63.3398Suche in Google Scholar
[25] Kolehmainen, E., Laihia, K., Kauppinen, R., Gawinecki, R., & Rasala, D. (1993). Nitramino, NRNO2 (R = H, CH3), as a substituent. 13C and 15N NMR spectroscopic study of nitraminobenzenes and -pyridines. Magnetic Resonance in Chemistry, 31, 659–664. DOI: 10.1002/mrc.1260310711. http://dx.doi.org/10.1002/mrc.126031071110.1002/mrc.1260310711Suche in Google Scholar
[26] Kyzioł, J. B., Broda, M. A., Zaleski, J., & Daszkiewicz, Z. (2002). Structure and properties of N-methyl-N-(4-pyridyl)-nitramine and 1,4-dihydro-1-methyl-4-nitriminopyridine. Journal of Molecular Structure, 605, 157–169. DOI: 10.1016/S0022-2860(01)00757-8. http://dx.doi.org/10.1016/S0022-2860(01)00757-810.1016/S0022-2860(01)00757-8Suche in Google Scholar
[27] Mizroni, R. H. (1961) Nitropyridines and their reduction products (except amines). In E. Klingsberg (Ed.), Chemistry of Heterocyclic Compounds: Pyridine and its Derivatives. Part Two, Vol. 14 (pp. 469–545). New York: Interscience Publishers, Inc. DOI: 10.1002/9780470186657. 10.1002/9780470186657Suche in Google Scholar
[28] Orton, K. J. P., & Smith, A. E. (1905). Transformations of highly substituted nitroaminobenzenes. Journal of the Chemical Society, Transactions, 87, 389–397. DOI: 10.1039/CT9058700389. http://dx.doi.org/10.1039/ct905870038910.1039/CT9058700389Suche in Google Scholar
[29] Pasternak, E. E., & Tomasik, P. (1978). Syntheses with aromatic nitramines. IV. The effect of the reaction conditions on acid-catalyzed rearrangement of 2-nitraminopyridine. Bulletin de L’Académie Polonaise des Sciences, Série des Sciences Chemiques, 26, 417–421. Suche in Google Scholar
[30] Płażek, E., Marcinków, A., & Stammer, C. (1928). Badania nad 3-aminopirydyną. II. Pochodne metylowane, acetyloaminopirydyny, formyloaminopirydyny. Roczniki Chemii, 15, 365–377. Suche in Google Scholar
[31] Potts, K. T., & Surapaneni, C. R. (1970). 1,2,4-Triazoles. XXV. The effect of pyridine substitution on the isomerization of striazolo[4,3-a]pyridines into s-triazolo[1,5-a]pyridines. Journal of Heterocyclic Chemistry, 7, 1019–1027. http://dx.doi.org/10.1002/jhet.557007050410.1002/jhet.5570070504Suche in Google Scholar
[32] Raeth, C. (1931). Zur Kenntnis des 3-Amino-pyridins. X. Mitteilung über Derivate des pyridins von A. Binz und C. Räh. Justus Liebig’s Annalen der Chemie, 486, 95–106. DOI: 10.1002/jlac.19314860106. http://dx.doi.org/10.1002/jlac.1931486010610.1002/jlac.19314860106Suche in Google Scholar
[33] Sandler, S. R., & Caro, W. (1972). Organic functional group preparations. Vol. 2 (pp. 286–342). New York: Academic Press. Suche in Google Scholar
[34] Sankararaman, S. (2005). Pericyclic reactions (p. 225). Weinheim: Wiley-VCH Verlag. Suche in Google Scholar
[35] Starkey, E. B. (1963). p-Dinitrobenzene. Organic Syntheses, Collective Volume 2, 225–229. Suche in Google Scholar
[36] Talik, T., & Talik, Z. (1967). Studies on derivatives of nitraminopyridines. Part I. Reaction with hydrazine. Roczniki Chemii, 41, 483–492. Suche in Google Scholar
[37] Tomasik, P. (1970). Application of Hammett equation to 2,5-disubstituted pyridine derivatives. Part I. Determination of [σ] constants for substituents X in a series of pyridine derivatives on the basic of polarographic studies of p-X-nitrobenzenes and 2-X-5-nitropyridines. Roczniki Chemii, 44, 341–354. Suche in Google Scholar
[38] Tomcufcik, A. S., & Starker, L. N. (1962). Aminopyridines. In E. Klingsberg (Ed.), Chemistry of heterocyclic compounds: Pyridine and its derivatives. Part 3, Vol. 14, (pp. 1–177). New York: Interscience Publishers, Inc. DOI: 10.1002/9780470186671. 10.1002/9780470186671Suche in Google Scholar
[39] Tschitschibabin, A. E., & Kirssanow, A. V. (1927). Nitramine der Pyridin-Reihe: β-Nitramino-pyridin. Berichte der Deutschen Chemischen Gesellschaft, 60, 2433–2438. DOI: 10.1002/cber.19270601108. http://dx.doi.org/10.1002/cber.1927060110810.1002/cber.19270601108Suche in Google Scholar
[40] von Schickh, O., Binz, A., & Schultz, A. (1936). Derivate des 3-Amino-pyridins. Berichte der Deutschen Chemischen Gesellschaft, 69, 2593–2605. DOI: 10.1002/cber.19360691202. http://dx.doi.org/10.1002/cber.1936069120210.1002/cber.19360691202Suche in Google Scholar
[41] White, W. N., White, H. S., & Fentiman, A. (1976). The acidcatalyzed nitramine rearrangement. 8. Solvent viscosity effects. Journal of Organic Chemistry, 41, 3166–3170. DOI: 10.1021/jo00881a022. http://dx.doi.org/10.1021/jo00881a02210.1021/jo00881a022Suche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media
Artikel in diesem Heft
- Application of isotachophoretic and conductometric methods for neomycin trisulphate determination
- A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution
- A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation
- Global optimization for parameter estimation of differential-algebraic systems
- Effect of ethyl acetate on carbohydrate components and crystalline structure of pulp produced in aqueous acetic acid pulping
- Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation
- Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes
- A strategy for new macrocycle magnetic materials synthesis
- Rearrangement of N-(3-pyridyl)nitramine
- New Cu(II), Co(II), and Ni(II) complexes with thieno[2,3-b]pyridine and 2-methylthieno[2,3-b]pyridine as ligands: Synthesis and crystal structures
- Synthesis of saccharide precursors for preparation of potential inhibitors of glycosyltranferases
- Simultaneous spectrophotometric determination of minoxidil and tretinoin by the H-point standard addition method and partial least squares
- Adsorption and release of terbinafine hydrochloride: Effects of adsorbents, additives, pH, and temperature
- Determination of alkaloids in Corydalis yanhusuo using hollow-fibre liquid phase microextraction and high performance liquid chromatography
- Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis
- A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS
- Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media