Startseite Investigation of 3-amino-1,2,4-triazole azodye derivatives as reagents for determination of mercury(II)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of 3-amino-1,2,4-triazole azodye derivatives as reagents for determination of mercury(II)

  • Abdalla Khedr EMAIL logo
Veröffentlicht/Copyright: 11. Oktober 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The reaction of mercury(II) with 3-(2,4-dihydroxyphen-1-ylazo)-1,2,4-triazole (HL1), 3-(2-hydroxy-5-methylphen-1-ylazo)-1,2,4-triazole (HL2), 3-(2-hydroxy-5-ethoxycarbonylphen-1-ylazo)-1,2,4-triazole (HL3), 3-(2-hydroxy-5-acetylphen-1-ylazo)-1,2,4-triazole (HL4), 3-(2-hydroxy-5-formylphen-1-ylazo)-1,2,4-triazole (HL5), and 3-(2-hydroxy-5-bromophen-1-ylazo)-1,2,4-triazole (HL6) was studied. A new, direct, and simple procedure was suggested for the spectrophotometric determination of mercury(II) based on its complexation reaction with HL1-HL6. The best reagent was found to be HL3 due to its high sensitivity and selectivity. In aqueous media of pH 9.0 containing 40 vol. % of methanol, Hg(II) reacts with HL3 to form a 1:2 (Hg(II) · HL3) complex having a sensitive absorption peak at 490 nm with the molar extinction coefficient of 3.31 × 104 L mol−1 cm−1 using 4 × 10−4 M of the reagent. Beer’s law is obeyed over the range from 0.00 µg mL−1 to 12.04 µg mL−1 of mercury(II). The proposed method was applied in the determination of mercury(II) in tap water, seawater and synthetic seawater samples, without the need of prior treatment, with satisfactory results.

[1] Britton, H. T. S. (1952). Hydrogen ions (4th ed.). London: Chapman and Hall. Suche in Google Scholar

[2] Etaiw, S. H., Issa, R. M., & El-Assy, N. B. (1981). Physicochemical characters and stability constants of Sc(III), Y(III), La(III), Ce(III), Gd(III) and Yb(III) complexes. Journal of Inorganic and Nuclear Chemistry, 43, 303–309. DOI: 10.1016/0022-1902(81)90013-0. http://dx.doi.org/10.1016/0022-1902(81)90013-010.1016/0022-1902(81)90013-0Suche in Google Scholar

[3] Feng, Y., Narasaki, H., Tian, L., Wu, S., & Chen, H. (1999). Flow-injection spectrophotmetric determination of mercury(II) in water by catalytic decomposition of ferrocyanide. Analytical Sciences, 15, 915–918. http://dx.doi.org/10.2116/analsci.15.91510.2116/analsci.15.915Suche in Google Scholar

[4] Fifield, F. W., & Haines, P. J. (2000). Environmental analytical chemistry (2nd ed.). London: Blackwell Science. Suche in Google Scholar

[5] Frank, J. W. (1965). The analytical uses of ethylenediaminetetraacetic-acid. London: D. Van Nostrand. Suche in Google Scholar

[6] Gaber, M., Hassanein, M., & Ahmed, H. A. (1986). Co(II), Ni(II) and Cu(II) complexes with some 3-arylazo-1,2,4-triazole dyes. Indian Journal of Textile Research, 11, 48–56. Suche in Google Scholar

[7] Hine, J. (1975). Structural effects of equilibria in organic chemistry. New York: John Wiley. Suche in Google Scholar

[8] Hosseini, M. S., & Hashemi-Moghaddam, H. (2004). Flotation-spectrophotometric determination of mercury in water samples using iodide and ferroin. Analytical Sciences, 20, 1449–1452. http://dx.doi.org/10.2116/analsci.20.144910.2116/analsci.20.1449Suche in Google Scholar PubMed

[9] Issa, M. I., Issa, R. M., & Ahmed, Y. Z. (1975). The Th(IV), Ce(III) and U(VI) chelates with hydroxyanthraquinones. Egyptian Journal of Chemistry, 18, 427–433. Suche in Google Scholar

[10] Kara, D., & Tekin, N. (2005). Solid-phase extraction and spectrophotometric determination of trace amounts of mercury in natural samples. Microchimica Acta, 149, 193–198. DOI: 10.1007/s00604-005-0322-y. http://dx.doi.org/10.1007/s00604-005-0322-y10.1007/s00604-005-0322-ySuche in Google Scholar

[11] Khan, H., Ahmed, M. J., & Bhanger, M. I. (2005). A simple spectrophotometric determination of trace level mercury using 1,5-diphenylthiocarbazone solubilized in micelle. Analytical Sciences, 21, 507–512. http://dx.doi.org/10.2116/analsci.21.50710.2116/analsci.21.507Suche in Google Scholar PubMed

[12] Khedr, A. M., & Gaber, M. (2005). Spectrophotometric studies of the reaction of zinc(II) with some azo-triazole compounds and its application to the spectrophotometric determination of micro-amounts of zinc(II). Spectroscopy Letters, 38, 431–445 (2005). DOI: 10.1081/SL-200062814. http://dx.doi.org/10.1081/SL-200062814Suche in Google Scholar

[13] Khedr, A. M., Gaber; M., Issa, R. M., & Erten, H. (2005). Synthesis and spectral studies of 5-[3-(1,2,4-triazolyl-azo]-2,4-dihydroxybenzaldehyde (TA) and its Schiff bases with 1,3-diaminopropane (TAAP) and 1,6-diaminohexane (TAAH). Their analytical application for spectrophotometric microdetermination of cobalt(II). Application in some radiochemical studies. Dyes and Pigments, 67, 117–126. DOI: 10.1016/j.dyepig.2004.11.004. http://dx.doi.org/10.1016/j.dyepig.2004.11.00410.1016/j.dyepig.2004.11.004Suche in Google Scholar

[14] Khedr, A. M. (2006). Spectrophotometric determination of nickel(II) in different samples by complexation with some triazolyl-azodyes. Chemical Papers, 60, 138–142. DOI: 10.2478/s11696-006-0025-9. http://dx.doi.org/10.2478/s11696-006-0025-910.2478/s11696-006-0025-9Suche in Google Scholar

[15] O’Neil, P. (1995). Mercury in environmental chemistry (2nd ed.). London: Chapman and Hall. Suche in Google Scholar

[16] Zayan, S. E., Ibrahim, N. A., Issa, R. M., & Magrabi, J. Y. (1972). Physico-chemical studies of the Fe(III) dinitrosoresorcinol reaction. Egyptian Journal of Chemistry, 15, 445–452. Suche in Google Scholar

[17] Zayan, S. E., Issa, R. M., Magrabi, J. Y., & El-Dessouky M. A. (1973). Spectrophotometric study on the copper(II)-dinitrosoresorcinol reaction. Egyptian Journal of Chemistry, 16, 459–464. Suche in Google Scholar

Published Online: 2008-10-11
Published in Print: 2008-12-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Investigation of 3-amino-1,2,4-triazole azodye derivatives as reagents for determination of mercury(II)
  2. Electrospray ionization mass spectra of pentoses, hexoses, and 2-deoxy-2-fluoro-d-glucose
  3. Influence of solution composition and iron powder characteristics on reduction of 2,4,6-trinitrophenol
  4. Electrochemical behaviour of lanthanum fluoride in molten fluorides
  5. Structural and electronic effects involving pyridine rings in 4-methylpyridine Cu4OX6L4 complexes. II. Correlations based on molecular structure of the Cu4OCl6(4-Mepy)4 complex
  6. Photoswitching of a heptanuclear FeII-FeIII complex — A case of multifunctional magnetic materials
  7. Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications
  8. Synthesis of macrocyclic polyethers and polyether diesters and preparation of their cationic complexes
  9. Prediction of anti-HIV activity and cytotoxicity of pyrimidinyl and triazinyl amines: A QSAR study
  10. Composition of the essential oil of Geocaryum cynapioides (Guss.) L. Engstrand
  11. Photolytic degradation of triclosan in the presence of surfactants
  12. Determination of dissociation degrees of K3NbF8 and K3TaF8 by thermodynamic analysis of subsystems of the KF-K2NbF7 and KF-K2TaF7 systems
  13. DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers
  14. Silica sulfuric acid-catalyzed expeditious environment-friendly hydrolysis of carboxylic acid esters under microwave irradiation
  15. Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0071-6/html
Button zum nach oben scrollen