Abstract
The thermal decomposition behavior in air of SrC2O4 · 1.25H2O was studied up to the formation of SrO using DTA-TG-DTG techniques. The decomposition proceeds through four well-defined steps. The first two steps are attributed to the dehydration of the salt, while the third and fourth ones are assigned to the decomposition of the anhydrous strontium oxalate into SrCO3 and the decomposition of SrCO3 to SrO, respectively. The exothermic DTA peak found at around 300°C is ascribed to the recrystallization of the anhydrous strontium oxalate. On the other hand, the endothermic DTA peak observed at 910°C can be attributed to the transition of orthorhombic-hexagonal phase of SrCO3. The kinetics of the thermal decomposition of anhydrous strontium oxalate and strontium carbonate, which are formed as stable intermediates, have been studied using non-isothermal TG technique. Analysis of kinetic data was carried out assuming various solid-state reaction models and applying three different computational methods. The data analysis according to the composite method showed that the anhydrous oxalate decomposition is best described by the two-dimensional diffusion-controlled mechanism (D2), while the decomposition of strontium carbonate is best fitted by means of the three-dimensional phase boundary-controlled mechanism (R3). The values of activation parameters obtained using different methods were compared and discussed.
[1] Boldyrev, V. V., Bulens, M., and Delmon, B., The Control of the Reactivity of Solids. Elsevier, Amsterdam, 1979. Suche in Google Scholar
[2] Marta, L., Zaharescu, M., Ciontea, L., and Petrisor, T., Appl. Supercond. 1, 677 (1993). http://dx.doi.org/10.1016/0964-1807(93)90279-B10.1016/0964-1807(93)90279-BSuche in Google Scholar
[3] Knaepen, E., Mullens, J., Yperman, J., and Van Poucke, L. C., Thermochim. Acta 284, 213 (1996). http://dx.doi.org/10.1016/0040-6031(96)02863-810.1016/0040-6031(96)02863-8Suche in Google Scholar
[4] Dollimore, D., Heal, G. R., and Passalis, N. P., Thermochim. Acta 92, 543 (1985). http://dx.doi.org/10.1016/0040-6031(85)85935-910.1016/0040-6031(85)85935-9Suche in Google Scholar
[5] Abd El-Khalik, M., Hanafi, S., and Selim, S. A., Surf. Technol. 25, 349 (1985). http://dx.doi.org/10.1016/0376-4583(85)90087-110.1016/0376-4583(85)90087-1Suche in Google Scholar
[6] Diefallah, El-H. M., Thermochim. Acta 202, 1 (1992). http://dx.doi.org/10.1016/0040-6031(92)85144-K10.1016/0040-6031(92)85144-KSuche in Google Scholar
[7] Nagase, K., Sato, K., and Tanaka, N., Bull. Chem. Soc. Jpn. 48, 439 (1975). http://dx.doi.org/10.1246/bcsj.48.43910.1246/bcsj.48.439Suche in Google Scholar
[8] Basahel, S. N. and Diefallah, El-H. M., Can. J. Chem. 70, 888 (1992). http://dx.doi.org/10.1139/v92-11810.1139/v92-118Suche in Google Scholar
[9] Urbanovici, E., Popescu, C., and Segal, E., J. Therm. Anal. Calorim. 58, 683 (1999). http://dx.doi.org/10.1023/A:101012513266910.1023/A:1010125132669Suche in Google Scholar
[10] Flynn, J. H., Thermochim. Acta 283, 35 (1996). http://dx.doi.org/10.1016/0040-6031(95)02804-810.1016/0040-6031(95)02804-8Suche in Google Scholar
[11] Gabal, M. A., Thermochim. Acta 412, 55 (2004). http://dx.doi.org/10.1016/j.tca.2003.08.02510.1016/j.tca.2003.08.025Suche in Google Scholar
[12] Gabal, M. A., Thermochim. Acta 402, 199 (2003). http://dx.doi.org/10.1016/S0040-6031(02)00616-010.1016/S0040-6031(02)00616-0Suche in Google Scholar
[13] Diefallah, El-H. M., Obaid, A. Y., Qusti, A. H., El-Bellihi, A. A., Wahab, M. A., and Moustafa, M. M., Thermochim. Acta 274, 165 (1996). http://dx.doi.org/10.1016/0040-6031(95)02695-910.1016/0040-6031(95)02695-9Suche in Google Scholar
[14] Vyazovkin, S. and Wight, C. A., Thermochim. Acta 341, 53 (1999). http://dx.doi.org/10.1016/S0040-6031(99)00253-110.1016/S0040-6031(99)00253-1Suche in Google Scholar
[15] Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., and Mitsuhashi, T., Thermochim. Acta 355, 125 (2000). http://dx.doi.org/10.1016/S0040-6031(00)00443-310.1016/S0040-6031(00)00443-3Suche in Google Scholar
[16] Gabal, M. A., El-Bellihi, A. A., and El-Bahnasawy, H. H., Mater. Chem. Phys. 81, 174 (2003). http://dx.doi.org/10.1016/S0254-0584(03)00183-410.1016/S0254-0584(03)00183-4Suche in Google Scholar
[17] Galwey, A. K., J. Therm. Anal. Calorim. 41, 267 (1994). http://dx.doi.org/10.1007/BF0254931510.1007/BF02549315Suche in Google Scholar
[18] Freeberg, F. E., Hartman, K. O., Hisatsune, I. C., and Schempf, J. M., J. Phys. Chem. 71, 397 (1967). http://dx.doi.org/10.1021/j100861a02910.1021/j100861a029Suche in Google Scholar
[19] Boldyrev, V. V., Eroshkim, V. I., Pismenko, U. T., Pyzhak, J. A., Medvinsy, A. A., Schmidt, I. V., and Kefeli, L. M., Kinet. Katal. 9, 260 (1968). Suche in Google Scholar
[20] Lvov, B. V., Thermochim. Acta 386, 1 (2002). http://dx.doi.org/10.1016/S0040-6031(01)00757-210.1016/S0040-6031(01)00757-2Suche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Determination of potassium in fatty acid methyl esters applying an ion-selective potassium electrode
- Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination
- Evaluation of colon cancer elements contents in serum using statistical methods
- Determination of norfloxacin in pharmaceuticals, human serum, and urine using a luminol—dissolved oxygen chemiluminescence system
- Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier
- Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations
- Thermal decomposition kinetics of strontium oxalate
- Synthesis and properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid
- Influence of photoinitiator and curing conditions on polymerization kinetics and gloss of UV-cured coatings
- Interactions in iron gall inks
- Bimolecular reduction of 9-alkyl-3-nitrocarbazoles
- A detailed analysis of volatile constituents of Aquilegia pancicii Degen, a Serbian steno-endemic species
- A one-pot synthesis of 8-amino-1-methoxy-6H-dibenzo[b,d]pyran-6-one
- Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract
Artikel in diesem Heft
- Determination of potassium in fatty acid methyl esters applying an ion-selective potassium electrode
- Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination
- Evaluation of colon cancer elements contents in serum using statistical methods
- Determination of norfloxacin in pharmaceuticals, human serum, and urine using a luminol—dissolved oxygen chemiluminescence system
- Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier
- Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations
- Thermal decomposition kinetics of strontium oxalate
- Synthesis and properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid
- Influence of photoinitiator and curing conditions on polymerization kinetics and gloss of UV-cured coatings
- Interactions in iron gall inks
- Bimolecular reduction of 9-alkyl-3-nitrocarbazoles
- A detailed analysis of volatile constituents of Aquilegia pancicii Degen, a Serbian steno-endemic species
- A one-pot synthesis of 8-amino-1-methoxy-6H-dibenzo[b,d]pyran-6-one
- Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract