Startseite Thermal decomposition kinetics of strontium oxalate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermal decomposition kinetics of strontium oxalate

  • F. Al-Newaiser EMAIL logo , S. Al-Thabaiti , A. Al-Youbi , A. Obaid und M. Gabal
Veröffentlicht/Copyright: 1. Oktober 2007
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The thermal decomposition behavior in air of SrC2O4 · 1.25H2O was studied up to the formation of SrO using DTA-TG-DTG techniques. The decomposition proceeds through four well-defined steps. The first two steps are attributed to the dehydration of the salt, while the third and fourth ones are assigned to the decomposition of the anhydrous strontium oxalate into SrCO3 and the decomposition of SrCO3 to SrO, respectively. The exothermic DTA peak found at around 300°C is ascribed to the recrystallization of the anhydrous strontium oxalate. On the other hand, the endothermic DTA peak observed at 910°C can be attributed to the transition of orthorhombic-hexagonal phase of SrCO3. The kinetics of the thermal decomposition of anhydrous strontium oxalate and strontium carbonate, which are formed as stable intermediates, have been studied using non-isothermal TG technique. Analysis of kinetic data was carried out assuming various solid-state reaction models and applying three different computational methods. The data analysis according to the composite method showed that the anhydrous oxalate decomposition is best described by the two-dimensional diffusion-controlled mechanism (D2), while the decomposition of strontium carbonate is best fitted by means of the three-dimensional phase boundary-controlled mechanism (R3). The values of activation parameters obtained using different methods were compared and discussed.

[1] Boldyrev, V. V., Bulens, M., and Delmon, B., The Control of the Reactivity of Solids. Elsevier, Amsterdam, 1979. Suche in Google Scholar

[2] Marta, L., Zaharescu, M., Ciontea, L., and Petrisor, T., Appl. Supercond. 1, 677 (1993). http://dx.doi.org/10.1016/0964-1807(93)90279-B10.1016/0964-1807(93)90279-BSuche in Google Scholar

[3] Knaepen, E., Mullens, J., Yperman, J., and Van Poucke, L. C., Thermochim. Acta 284, 213 (1996). http://dx.doi.org/10.1016/0040-6031(96)02863-810.1016/0040-6031(96)02863-8Suche in Google Scholar

[4] Dollimore, D., Heal, G. R., and Passalis, N. P., Thermochim. Acta 92, 543 (1985). http://dx.doi.org/10.1016/0040-6031(85)85935-910.1016/0040-6031(85)85935-9Suche in Google Scholar

[5] Abd El-Khalik, M., Hanafi, S., and Selim, S. A., Surf. Technol. 25, 349 (1985). http://dx.doi.org/10.1016/0376-4583(85)90087-110.1016/0376-4583(85)90087-1Suche in Google Scholar

[6] Diefallah, El-H. M., Thermochim. Acta 202, 1 (1992). http://dx.doi.org/10.1016/0040-6031(92)85144-K10.1016/0040-6031(92)85144-KSuche in Google Scholar

[7] Nagase, K., Sato, K., and Tanaka, N., Bull. Chem. Soc. Jpn. 48, 439 (1975). http://dx.doi.org/10.1246/bcsj.48.43910.1246/bcsj.48.439Suche in Google Scholar

[8] Basahel, S. N. and Diefallah, El-H. M., Can. J. Chem. 70, 888 (1992). http://dx.doi.org/10.1139/v92-11810.1139/v92-118Suche in Google Scholar

[9] Urbanovici, E., Popescu, C., and Segal, E., J. Therm. Anal. Calorim. 58, 683 (1999). http://dx.doi.org/10.1023/A:101012513266910.1023/A:1010125132669Suche in Google Scholar

[10] Flynn, J. H., Thermochim. Acta 283, 35 (1996). http://dx.doi.org/10.1016/0040-6031(95)02804-810.1016/0040-6031(95)02804-8Suche in Google Scholar

[11] Gabal, M. A., Thermochim. Acta 412, 55 (2004). http://dx.doi.org/10.1016/j.tca.2003.08.02510.1016/j.tca.2003.08.025Suche in Google Scholar

[12] Gabal, M. A., Thermochim. Acta 402, 199 (2003). http://dx.doi.org/10.1016/S0040-6031(02)00616-010.1016/S0040-6031(02)00616-0Suche in Google Scholar

[13] Diefallah, El-H. M., Obaid, A. Y., Qusti, A. H., El-Bellihi, A. A., Wahab, M. A., and Moustafa, M. M., Thermochim. Acta 274, 165 (1996). http://dx.doi.org/10.1016/0040-6031(95)02695-910.1016/0040-6031(95)02695-9Suche in Google Scholar

[14] Vyazovkin, S. and Wight, C. A., Thermochim. Acta 341, 53 (1999). http://dx.doi.org/10.1016/S0040-6031(99)00253-110.1016/S0040-6031(99)00253-1Suche in Google Scholar

[15] Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., and Mitsuhashi, T., Thermochim. Acta 355, 125 (2000). http://dx.doi.org/10.1016/S0040-6031(00)00443-310.1016/S0040-6031(00)00443-3Suche in Google Scholar

[16] Gabal, M. A., El-Bellihi, A. A., and El-Bahnasawy, H. H., Mater. Chem. Phys. 81, 174 (2003). http://dx.doi.org/10.1016/S0254-0584(03)00183-410.1016/S0254-0584(03)00183-4Suche in Google Scholar

[17] Galwey, A. K., J. Therm. Anal. Calorim. 41, 267 (1994). http://dx.doi.org/10.1007/BF0254931510.1007/BF02549315Suche in Google Scholar

[18] Freeberg, F. E., Hartman, K. O., Hisatsune, I. C., and Schempf, J. M., J. Phys. Chem. 71, 397 (1967). http://dx.doi.org/10.1021/j100861a02910.1021/j100861a029Suche in Google Scholar

[19] Boldyrev, V. V., Eroshkim, V. I., Pismenko, U. T., Pyzhak, J. A., Medvinsy, A. A., Schmidt, I. V., and Kefeli, L. M., Kinet. Katal. 9, 260 (1968). Suche in Google Scholar

[20] Lvov, B. V., Thermochim. Acta 386, 1 (2002). http://dx.doi.org/10.1016/S0040-6031(01)00757-210.1016/S0040-6031(01)00757-2Suche in Google Scholar

Published Online: 2007-10-1
Published in Print: 2007-10-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0050-3/html
Button zum nach oben scrollen