Abstract
Optimization of immobilization conditions was carried out for covalent binding of Aureobasidium pullulans fructosyltransferase to a copolymer of butyl acrylate and ethylene glycol dimethacrylate using a glutaraldehyde method. It was found that the highest activity of the preparation could be obtained for the immobilization pH 6.0 and initial protein amount 8.5 g per dm3 of the carrier. Effects of the reaction pH, temperature, and initial sucrose concentration on the activity and stability of the preparation were analyzed. Further investigations involved storage stability and operational stability in a mechanically stirred-tank reactor.
[1] Sangeetha, P. T., Ramesh, M. N., and Prapulla, S. G., Trends Food Sci. Technol. 16, 442 (2005). http://dx.doi.org/10.1016/j.tifs.2005.05.00310.1016/j.tifs.2005.05.003Suche in Google Scholar
[2] Tieking, M. and Gänzle, M. G., Trends Food Sci. Technol. 16, 79 (2005). http://dx.doi.org/10.1016/j.tifs.2004.02.01510.1016/j.tifs.2004.02.015Suche in Google Scholar
[3] Ritsema, T. and Smeekens, S., Curr. Opin. Plant Biol. 6, 223 (2003). http://dx.doi.org/10.1016/S1369-5266(03)00034-710.1016/S1369-5266(03)00034-7Suche in Google Scholar
[4] Yun, J. W., Enzyme Microb. Technol. 19, 107 (1996). http://dx.doi.org/10.1016/0141-0229(95)00188-310.1016/0141-0229(95)00188-3Suche in Google Scholar
[5] Yun, J. W., Jung, K. H., Oh, J. W., and Lee, J. H., Appl. Biochem. Biotechnol. 24, 299 (1990). http://dx.doi.org/10.1007/BF0292025410.1007/BF02920254Suche in Google Scholar
[6] Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., and Báleš, V., Chem. Pap. 53, 366 (1999). Suche in Google Scholar
[7] Hidaka, H., Hirayama, M., and Sumi, N., Agric. Biol. Chem. 52, 1181 (1988). Suche in Google Scholar
[8] Hayashi, S., Nonoguchi, M., Shimokawa, Y., Tubouchi, M., Takasaki, Y., and Imada, K., J. Ind. Microbiol. 9, 145 (1992). http://dx.doi.org/10.1007/BF0156974710.1007/BF01569747Suche in Google Scholar
[9] Katchalski-Katzir, E. and Kraemer, D. M., J. Mol. Catal. B-Enzym. 10, 157 (2000). http://dx.doi.org/10.1016/S1381-1177(00)00124-710.1016/S1381-1177(00)00124-7Suche in Google Scholar
[10] D’souza, F. and Lali, A., Biotechnol. Tech. 13, 59 (1999). http://dx.doi.org/10.1023/A:100884373175810.1023/A:1008843731758Suche in Google Scholar
[11] Industrial Enzymology, 2nd Edition (Godfrey, T. and West, S., Editors). MacMillan Press, London, 1996. Suche in Google Scholar
[12] Hayashi, S., Tubouchi, M., Takasaki, Y., and Imada, K., Biotechnol. Lett. 16, 227 (1994). http://dx.doi.org/10.1007/BF0013461610.1007/BF00134616Suche in Google Scholar
[13] Hayashi, S., Ito, K., Nonoguchi, M., Takasaki, Y., and Imada, K., J. Ferment. Bioeng. 72, 68 (1991). http://dx.doi.org/10.1016/0922-338X(91)90150-F10.1016/0922-338X(91)90150-FSuche in Google Scholar
[14] Yun, J. W., Kang, S. C., and Song, S. K., Biotechnol. Tech. 9, 805 (1995). http://dx.doi.org/10.1007/BF0015940510.1007/BF00159405Suche in Google Scholar
[15] Kim, M. H., Choi, S. S., In, M. J., Choi, I. S., Han, M. S., and Lim, B. S., U.S. 5215905 (1993). Suche in Google Scholar
[16] Chiang, C. J., Lee, W. C., Sheu, D. C., and Duan, K. J., Biotechnol. Prog. 13, 577 (1997). http://dx.doi.org/10.1021/bp970067z10.1021/bp970067zSuche in Google Scholar
[17] Lee, W. C., Chiang, C. J., and Tsai, P. Y., Ind. Eng. Chem. Res. 38, 2564 (1999). http://dx.doi.org/10.1021/ie980767o10.1021/ie980767oSuche in Google Scholar
[18] Ghazi, I., De Segura, A. G., Fernandez-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M. L., Plou, F. J., and Ballesteros, A., J. Mol. Catal. B-Enzym. 35, 19 (2005). http://dx.doi.org/10.1016/j.molcatb.2005.04.01310.1016/j.molcatb.2005.04.013Suche in Google Scholar
[19] Bryjak, J., Bachmann, K., Pawłów, B., Maliszewska, I., Trochimczuk, A., and Kolarz, B. N., Chem. Eng. J. 65, 249 (1997). http://dx.doi.org/10.1016/S1385-8947(97)00021-110.1016/S1385-8947(97)00021-1Suche in Google Scholar
[20] Bryjak, J. and Kolarz, B. N., Process Biochem. 33, 409 (1998). http://dx.doi.org/10.1016/S0032-9592(97)00098-810.1016/S0032-9592(97)00098-8Suche in Google Scholar
[21] Bryjak, J. and Trochimczuk, A. W., Enzyme Microb. Technol. 39, 573 (2006). http://dx.doi.org/10.1016/j.enzmictec.2005.11.01310.1016/j.enzmictec.2005.11.013Suche in Google Scholar
[22] Bryjak, J., Biochem. Eng. J. 16, 347 (2003). http://dx.doi.org/10.1016/S1369-703X(03)00114-110.1016/S1369-703X(03)00114-1Suche in Google Scholar
[23] L’Hocine, L., Wang, Z., Jiang, B., and Xu, S., J. Biotechnol. 81, 73 (2000). http://dx.doi.org/10.1016/S0168-1656(00)00277-710.1016/S0168-1656(00)00277-7Suche in Google Scholar
[24] Antošová, M. and Polakovič, M., Chem. Pap. 55, 350 (2001). Suche in Google Scholar
[25] Vandáková, M., Platková, Z., Antošová, M., Báleš, V., and Polakovič, M., Chem. Pap. 58, 15 (2004). Suche in Google Scholar
[26] Bryjak, J., Trochimczuk, A., and Noworyta, A., J. Chem. Technol. Biotechnol. 57, 73 (1993). http://dx.doi.org/10.1002/jctb.28057011310.1002/jctb.280570113Suche in Google Scholar PubMed
[27] Platková, Z., Polakovič, M., Štefuca, V., Vandáková, M., and Antošová, M., Chem. Pap. 60, 469 (2006). http://dx.doi.org/10.2478/s11696-006-0085-x10.2478/s11696-006-0085-xSuche in Google Scholar
[28] Tanriseven, A. and Aslan, Y., Enzyme Microb. Technol. 36, 550 (2005). http://dx.doi.org/10.1016/j.enzmictec.2004.12.00110.1016/j.enzmictec.2004.12.001Suche in Google Scholar
[29] Madlová, A., Antošová, M., Polakovič, M., and Báleš, V., Chem. Pap. 54, 339 (2000). Suche in Google Scholar
[30] Bryjak, J. and Noworyta, A., J. Chem. Technol. Biotechnol. 57, 79 (1993). http://dx.doi.org/10.1002/jctb.28057011410.1002/jctb.280570114Suche in Google Scholar
[31] Tien, C. J., and Chiang, B. H., Process Biochem. 35, 377 (1999). http://dx.doi.org/10.1016/S0032-9592(99)00081-310.1016/S0032-9592(99)00081-3Suche in Google Scholar
[32] Arica, M. Y., Testereci, H. N., and Denizli, A., J. Chromatogr. A 799, 83 (1998). http://dx.doi.org/10.1016/S0021-9673(97)01079-010.1016/S0021-9673(97)01079-0Suche in Google Scholar
[33] Erginer, R., Toppare, L., Alkan, S., and Bakir, U., React. Funct. Polym. 45, 227 (2000). http://dx.doi.org/10.1016/S1381-5148(00)00036-510.1016/S1381-5148(00)00036-5Suche in Google Scholar
[34] Mansfeld, J., Förster, M., Schellenberger, A., and Dautzenberg, H., Enzyme Microb. Technol. 13, 240 (1991). http://dx.doi.org/10.1016/0141-0229(91)90135-W10.1016/0141-0229(91)90135-WSuche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Determination of potassium in fatty acid methyl esters applying an ion-selective potassium electrode
- Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination
- Evaluation of colon cancer elements contents in serum using statistical methods
- Determination of norfloxacin in pharmaceuticals, human serum, and urine using a luminol—dissolved oxygen chemiluminescence system
- Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier
- Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations
- Thermal decomposition kinetics of strontium oxalate
- Synthesis and properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid
- Influence of photoinitiator and curing conditions on polymerization kinetics and gloss of UV-cured coatings
- Interactions in iron gall inks
- Bimolecular reduction of 9-alkyl-3-nitrocarbazoles
- A detailed analysis of volatile constituents of Aquilegia pancicii Degen, a Serbian steno-endemic species
- A one-pot synthesis of 8-amino-1-methoxy-6H-dibenzo[b,d]pyran-6-one
- Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract
Artikel in diesem Heft
- Determination of potassium in fatty acid methyl esters applying an ion-selective potassium electrode
- Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination
- Evaluation of colon cancer elements contents in serum using statistical methods
- Determination of norfloxacin in pharmaceuticals, human serum, and urine using a luminol—dissolved oxygen chemiluminescence system
- Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier
- Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations
- Thermal decomposition kinetics of strontium oxalate
- Synthesis and properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid
- Influence of photoinitiator and curing conditions on polymerization kinetics and gloss of UV-cured coatings
- Interactions in iron gall inks
- Bimolecular reduction of 9-alkyl-3-nitrocarbazoles
- A detailed analysis of volatile constituents of Aquilegia pancicii Degen, a Serbian steno-endemic species
- A one-pot synthesis of 8-amino-1-methoxy-6H-dibenzo[b,d]pyran-6-one
- Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract