Abstract
Optimization of immobilization conditions was carried out for covalent binding of Aureobasidium pullulans fructosyltransferase to a copolymer of butyl acrylate and ethylene glycol dimethacrylate using a glutaraldehyde method. It was found that the highest activity of the preparation could be obtained for the immobilization pH 6.0 and initial protein amount 8.5 g per dm3 of the carrier. Effects of the reaction pH, temperature, and initial sucrose concentration on the activity and stability of the preparation were analyzed. Further investigations involved storage stability and operational stability in a mechanically stirred-tank reactor.
[1] Sangeetha, P. T., Ramesh, M. N., and Prapulla, S. G., Trends Food Sci. Technol. 16, 442 (2005). http://dx.doi.org/10.1016/j.tifs.2005.05.00310.1016/j.tifs.2005.05.003Search in Google Scholar
[2] Tieking, M. and Gänzle, M. G., Trends Food Sci. Technol. 16, 79 (2005). http://dx.doi.org/10.1016/j.tifs.2004.02.01510.1016/j.tifs.2004.02.015Search in Google Scholar
[3] Ritsema, T. and Smeekens, S., Curr. Opin. Plant Biol. 6, 223 (2003). http://dx.doi.org/10.1016/S1369-5266(03)00034-710.1016/S1369-5266(03)00034-7Search in Google Scholar
[4] Yun, J. W., Enzyme Microb. Technol. 19, 107 (1996). http://dx.doi.org/10.1016/0141-0229(95)00188-310.1016/0141-0229(95)00188-3Search in Google Scholar
[5] Yun, J. W., Jung, K. H., Oh, J. W., and Lee, J. H., Appl. Biochem. Biotechnol. 24, 299 (1990). http://dx.doi.org/10.1007/BF0292025410.1007/BF02920254Search in Google Scholar
[6] Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., and Báleš, V., Chem. Pap. 53, 366 (1999). Search in Google Scholar
[7] Hidaka, H., Hirayama, M., and Sumi, N., Agric. Biol. Chem. 52, 1181 (1988). Search in Google Scholar
[8] Hayashi, S., Nonoguchi, M., Shimokawa, Y., Tubouchi, M., Takasaki, Y., and Imada, K., J. Ind. Microbiol. 9, 145 (1992). http://dx.doi.org/10.1007/BF0156974710.1007/BF01569747Search in Google Scholar
[9] Katchalski-Katzir, E. and Kraemer, D. M., J. Mol. Catal. B-Enzym. 10, 157 (2000). http://dx.doi.org/10.1016/S1381-1177(00)00124-710.1016/S1381-1177(00)00124-7Search in Google Scholar
[10] D’souza, F. and Lali, A., Biotechnol. Tech. 13, 59 (1999). http://dx.doi.org/10.1023/A:100884373175810.1023/A:1008843731758Search in Google Scholar
[11] Industrial Enzymology, 2nd Edition (Godfrey, T. and West, S., Editors). MacMillan Press, London, 1996. Search in Google Scholar
[12] Hayashi, S., Tubouchi, M., Takasaki, Y., and Imada, K., Biotechnol. Lett. 16, 227 (1994). http://dx.doi.org/10.1007/BF0013461610.1007/BF00134616Search in Google Scholar
[13] Hayashi, S., Ito, K., Nonoguchi, M., Takasaki, Y., and Imada, K., J. Ferment. Bioeng. 72, 68 (1991). http://dx.doi.org/10.1016/0922-338X(91)90150-F10.1016/0922-338X(91)90150-FSearch in Google Scholar
[14] Yun, J. W., Kang, S. C., and Song, S. K., Biotechnol. Tech. 9, 805 (1995). http://dx.doi.org/10.1007/BF0015940510.1007/BF00159405Search in Google Scholar
[15] Kim, M. H., Choi, S. S., In, M. J., Choi, I. S., Han, M. S., and Lim, B. S., U.S. 5215905 (1993). Search in Google Scholar
[16] Chiang, C. J., Lee, W. C., Sheu, D. C., and Duan, K. J., Biotechnol. Prog. 13, 577 (1997). http://dx.doi.org/10.1021/bp970067z10.1021/bp970067zSearch in Google Scholar
[17] Lee, W. C., Chiang, C. J., and Tsai, P. Y., Ind. Eng. Chem. Res. 38, 2564 (1999). http://dx.doi.org/10.1021/ie980767o10.1021/ie980767oSearch in Google Scholar
[18] Ghazi, I., De Segura, A. G., Fernandez-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M. L., Plou, F. J., and Ballesteros, A., J. Mol. Catal. B-Enzym. 35, 19 (2005). http://dx.doi.org/10.1016/j.molcatb.2005.04.01310.1016/j.molcatb.2005.04.013Search in Google Scholar
[19] Bryjak, J., Bachmann, K., Pawłów, B., Maliszewska, I., Trochimczuk, A., and Kolarz, B. N., Chem. Eng. J. 65, 249 (1997). http://dx.doi.org/10.1016/S1385-8947(97)00021-110.1016/S1385-8947(97)00021-1Search in Google Scholar
[20] Bryjak, J. and Kolarz, B. N., Process Biochem. 33, 409 (1998). http://dx.doi.org/10.1016/S0032-9592(97)00098-810.1016/S0032-9592(97)00098-8Search in Google Scholar
[21] Bryjak, J. and Trochimczuk, A. W., Enzyme Microb. Technol. 39, 573 (2006). http://dx.doi.org/10.1016/j.enzmictec.2005.11.01310.1016/j.enzmictec.2005.11.013Search in Google Scholar
[22] Bryjak, J., Biochem. Eng. J. 16, 347 (2003). http://dx.doi.org/10.1016/S1369-703X(03)00114-110.1016/S1369-703X(03)00114-1Search in Google Scholar
[23] L’Hocine, L., Wang, Z., Jiang, B., and Xu, S., J. Biotechnol. 81, 73 (2000). http://dx.doi.org/10.1016/S0168-1656(00)00277-710.1016/S0168-1656(00)00277-7Search in Google Scholar
[24] Antošová, M. and Polakovič, M., Chem. Pap. 55, 350 (2001). Search in Google Scholar
[25] Vandáková, M., Platková, Z., Antošová, M., Báleš, V., and Polakovič, M., Chem. Pap. 58, 15 (2004). Search in Google Scholar
[26] Bryjak, J., Trochimczuk, A., and Noworyta, A., J. Chem. Technol. Biotechnol. 57, 73 (1993). http://dx.doi.org/10.1002/jctb.28057011310.1002/jctb.280570113Search in Google Scholar PubMed
[27] Platková, Z., Polakovič, M., Štefuca, V., Vandáková, M., and Antošová, M., Chem. Pap. 60, 469 (2006). http://dx.doi.org/10.2478/s11696-006-0085-x10.2478/s11696-006-0085-xSearch in Google Scholar
[28] Tanriseven, A. and Aslan, Y., Enzyme Microb. Technol. 36, 550 (2005). http://dx.doi.org/10.1016/j.enzmictec.2004.12.00110.1016/j.enzmictec.2004.12.001Search in Google Scholar
[29] Madlová, A., Antošová, M., Polakovič, M., and Báleš, V., Chem. Pap. 54, 339 (2000). Search in Google Scholar
[30] Bryjak, J. and Noworyta, A., J. Chem. Technol. Biotechnol. 57, 79 (1993). http://dx.doi.org/10.1002/jctb.28057011410.1002/jctb.280570114Search in Google Scholar
[31] Tien, C. J., and Chiang, B. H., Process Biochem. 35, 377 (1999). http://dx.doi.org/10.1016/S0032-9592(99)00081-310.1016/S0032-9592(99)00081-3Search in Google Scholar
[32] Arica, M. Y., Testereci, H. N., and Denizli, A., J. Chromatogr. A 799, 83 (1998). http://dx.doi.org/10.1016/S0021-9673(97)01079-010.1016/S0021-9673(97)01079-0Search in Google Scholar
[33] Erginer, R., Toppare, L., Alkan, S., and Bakir, U., React. Funct. Polym. 45, 227 (2000). http://dx.doi.org/10.1016/S1381-5148(00)00036-510.1016/S1381-5148(00)00036-5Search in Google Scholar
[34] Mansfeld, J., Förster, M., Schellenberger, A., and Dautzenberg, H., Enzyme Microb. Technol. 13, 240 (1991). http://dx.doi.org/10.1016/0141-0229(91)90135-W10.1016/0141-0229(91)90135-WSearch in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of potassium in fatty acid methyl esters applying an ion-selective potassium electrode
- Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination
- Evaluation of colon cancer elements contents in serum using statistical methods
- Determination of norfloxacin in pharmaceuticals, human serum, and urine using a luminol—dissolved oxygen chemiluminescence system
- Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier
- Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations
- Thermal decomposition kinetics of strontium oxalate
- Synthesis and properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid
- Influence of photoinitiator and curing conditions on polymerization kinetics and gloss of UV-cured coatings
- Interactions in iron gall inks
- Bimolecular reduction of 9-alkyl-3-nitrocarbazoles
- A detailed analysis of volatile constituents of Aquilegia pancicii Degen, a Serbian steno-endemic species
- A one-pot synthesis of 8-amino-1-methoxy-6H-dibenzo[b,d]pyran-6-one
- Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract
Articles in the same Issue
- Determination of potassium in fatty acid methyl esters applying an ion-selective potassium electrode
- Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination
- Evaluation of colon cancer elements contents in serum using statistical methods
- Determination of norfloxacin in pharmaceuticals, human serum, and urine using a luminol—dissolved oxygen chemiluminescence system
- Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier
- Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations
- Thermal decomposition kinetics of strontium oxalate
- Synthesis and properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid
- Influence of photoinitiator and curing conditions on polymerization kinetics and gloss of UV-cured coatings
- Interactions in iron gall inks
- Bimolecular reduction of 9-alkyl-3-nitrocarbazoles
- A detailed analysis of volatile constituents of Aquilegia pancicii Degen, a Serbian steno-endemic species
- A one-pot synthesis of 8-amino-1-methoxy-6H-dibenzo[b,d]pyran-6-one
- Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract