Abstract
Syntheses and spectral characteristics of cadmium(II) compounds (CdSeO4, CdSeO3, and Cd(NCSe)2(nia)2) containing selenium in oxidation states (VI), (IV), and (-II) are described. In Cd(NCSe)2(nia)2, nicotinamide (nia) and selenocyanate anions are bonded to Cd atom as N-donor monodentate ligands. Nicotinamide is coordinated through the ring nitrogen atom. The effects of these selenium compounds as well as Cd(NCS)2(nia)2 on the growth and Cd accumulation in roots and shoots of hydroponically cultivated chamomile plants (cultivar Lutea) were studied. In the applied concentration range (12–60 µmol dm−3) Cd(NCS)2(nia)2 affected neither the length nor the dry mass of roots and shoots. Other compounds applied at 24 µmol dm−3 and 60 µmol dm−3 significantly reduced dry mass of roots and shoots. Selenium oxidation state in the cadmium compounds affected Cd accumulation in plant organs as well as Cd translocation within the plants, which was reflected in the values of bioaccumulation (BAF) and translocation factors (S/R). Cd amount accumulated by shoots was lower than that in the roots. The highest BAF values determined for Cd accumulation in shoots were obtained with CdSeO4. Substitution of S with Se in the Cd(NCX)2(nia)2 (X = Se or S) caused an increase of Cd translocation into the shoots.
[1] Barceló, J. and Poschenrieder, C., J. Plant Nutr. 13, 1 (1990). http://dx.doi.org/10.1080/0190416900936405710.1080/01904169009364057Suche in Google Scholar
[2] Yang, M. G., Lin, X. Y., and Yang, X. E., Chin. J. Appl. Ecol. 9, 89 (1998). Suche in Google Scholar
[3] Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., and Raskin, I., Biotechnology (NY) 13, 468 (1995). http://dx.doi.org/10.1038/nbt0595-46810.1038/nbt0595-468Suche in Google Scholar PubMed
[4] Senden, M. H. M. N., Van Paassen, F. J. M., Van der Meer, A. J. G. M., and Wolterbeek, H. T., Plant Cell Environ. 15, 71 (1992). http://dx.doi.org/10.1111/j.1365-3040.1992.tb01459.x10.1111/j.1365-3040.1992.tb01459.xSuche in Google Scholar
[5] Clemens, S., Kim, E. J., Neumann, D., and Schroeder, J. I., EMBO J. 18, 3325 (1999). http://dx.doi.org/10.1093/emboj/18.12.332510.1093/emboj/18.12.3325Suche in Google Scholar PubMed PubMed Central
[6] Rauser, W. E., Cell Biochem. Biophys. 31, 19 (1999). http://dx.doi.org/10.1159/00000861710.1159/000008617Suche in Google Scholar PubMed
[7] Ernst, W. H. O., Verkleij, J. A. C., and Schat, H., Acta Bot. Neerl. 41, 229 (1992). Suche in Google Scholar
[8] Ben Youssef, R., Nouairi, I., Ben Temime, S., Taamalli, W., Zarrouk, M., Ghorbai, M. H., and Daoud, D. B., C.R. Biol. 328, 745 (2005). http://dx.doi.org/10.1016/j.crvi.2005.05.01010.1016/j.crvi.2005.05.010Suche in Google Scholar PubMed
[9] Somashekaraiah, B. V., Padmaja, K., and Prasad, A. R. K., Physiol. Plant. 85, 85 (1992). http://dx.doi.org/10.1111/j.1399-3054.1992.tb05267.x10.1111/j.1399-3054.1992.tb05267.xSuche in Google Scholar
[10] Azevedo, H., Pinto, C. G. G., and Santos, C., J. Plant Nutr. 28, 2233 (2005). http://dx.doi.org/10.1080/0190416050032481610.1080/01904160500324816Suche in Google Scholar
[11] Nigam, R. and Srivastava, M. M., Chem. Speciation Bioavailability 17, 19 (2005). 10.3184/095422905782774973Suche in Google Scholar
[12] Nigam, R., Srivastava, S., Prakash, S., and Srivastava, M. M., Plant Soil 230, 107 (2001). http://dx.doi.org/10.1023/A:100486581152910.1023/A:1004865811529Suche in Google Scholar
[13] Degryse, F., Smolders, E., and Merckx, R., Environ. Sci. Technol. 40, 830 (2006). http://dx.doi.org/10.1021/es050894t10.1021/es050894tSuche in Google Scholar
[14] Wu, F. B., Zhang, G. P., and Yu, J. S., Commun. Soil Sci. Plant Anal. 34, 2003 (2003). http://dx.doi.org/10.1081/CSS-12002323310.1081/CSS-120023233Suche in Google Scholar
[15] Chizzola, R. and Mitteregger, U. S., J. Plant Nutr. 28, 1383 (2005). http://dx.doi.org/10.1081/PLN-20006747010.1081/PLN-200067470Suche in Google Scholar
[16] Grejtovský, A., Markušová, K., Eliašová, A., and Šafárik, P. J., Plant Soil Environ. 52, 1 (2006). 10.17221/3339-PSESuche in Google Scholar
[17] Shanker, K., Mishra, S., Srivastava, S., Srivastava, R., Dass, S., Prakash, S., and Srivastava, M. M., Bull. Environ. Contam. Toxicol. 56, 419 (1996). http://dx.doi.org/10.1007/s00128990006010.1007/s001289900060Suche in Google Scholar
[18] Masarovičová, E., Král’ová, K., and Streško, V., Chem. Inz. Ekol. 10, 275 (2003). Suche in Google Scholar
[19] Král’ová, K., Masarovičová, E., Lešíková, J., and Ondrejkovičová, I., Chem. Pap. 60, 149 (2006). http://dx.doi.org/10.2478/s11696-006-0027-710.2478/s11696-006-0027-7Suche in Google Scholar
[20] Sathianandan, K., McCory, L. D., and Margrave, J. L., Spectrochim. Acta 20, 957 (1964). http://dx.doi.org/10.1016/0371-1951(64)80096-510.1016/0371-1951(64)80096-5Suche in Google Scholar
[21] Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th Edition. Wiley—Interscience, New York, 1997. Suche in Google Scholar
[22] Maji, T. K., Sain, S., Mostafa, G., Sas, D., Lu, T.-H., and Chaudhuri, N. R., J. Chem. Soc., Dalton Trans. 2001, 3149. 10.1039/b101064fSuche in Google Scholar
[23] Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q., and Liu, L.-Q., Acta Cryst. E: Struct. Rep. Online 62, 188 (2006). http://dx.doi.org/10.1107/S160053680504253410.1107/S1600536805042534Suche in Google Scholar
[24] Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q., and Xue, G., Acta Crystallogr., Sect. E: Struct. Rep. Online 61, 1111 (2005). http://dx.doi.org/10.1107/S160053680501289410.1107/S1600536805012894Suche in Google Scholar
[25] Palkovičová, J., Král’ová, K., Masarovičová, E., Kubová, J., and Ondrejkovičová, I., Acta Horticulture (2007), in press. Suche in Google Scholar
[26] Pavlovič, A., Masarovičová, E., Král’ová, K., and Kubová, J., Bull. Environ. Contam. Toxicol. 77, 763 (2006). http://dx.doi.org/10.1007/s00128-006-1129-110.1007/s00128-006-1129-1Suche in Google Scholar PubMed
[27] Whanger, P. D., J. Trace Elem. Electrolytes Health Dis. 6, 209 (1992). Suche in Google Scholar
[28] Sors, T. G., Ellis, D. R., and Salt, D. E., Photosynth. Res. 86, 373 (2005). http://dx.doi.org/10.1007/s11120-005-5222-910.1007/s11120-005-5222-9Suche in Google Scholar PubMed
[29] de Souza, M. P., Pickering, I. J., Walla, M., and Terry, N., Plant Physiol. 128, 625 (2002). http://dx.doi.org/10.1104/pp.128.2.62510.1104/pp.010686Suche in Google Scholar PubMed PubMed Central
[30] Norsworthy, J. K. and Meehan, J. T., Weed Sci. 53, 515 (2005). http://dx.doi.org/10.1614/WS-04-208R10.1614/WS-04-208RSuche in Google Scholar
[31] Olivier, C., Vaughn, S. F., Mizubuti, E. S. G., and Loria, R., J. Chem. Ecol. 25, 2687 (1999). http://dx.doi.org/10.1023/A:102089530658810.1023/A:1020895306588Suche in Google Scholar
[32] Tang, L. and Zhang, Y. S., Curr. Drug Metab. 5, 193 (2004). http://dx.doi.org/10.2174/138920004348902710.2174/1389200043489027Suche in Google Scholar PubMed
[33] Forney, C. F. and Jordan, M. A., J. Agric. Food Chem. 46, 5295 (1998). http://dx.doi.org/10.1021/jf980443a10.1021/jf980443aSuche in Google Scholar
[34] Valigura, D., Gracza, T., Mašlejová, A., Papánková, B., Šima, J., and Špirková, K., Chemical Tables, p. 189. Slovak University of Technology Bratislava, 2004 (in Slovak). Suche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A review of methods for synthesis of nanostructured metals with emphasis on iron compounds
- Effect of selenium oxidation state on cadmium translocation in chamomile plants
- Optimization of ammonium nitrate concentration in single-stage continuous cultures of Aspergillus niger with biomass retention
- Behaviour of inorganic constituents of municipal sewage sludge during fluidized-bed combustion
- Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta area
- Structure of cyano-bridged Eu(III)—Co(III) bimetallic assembly and its application to photophysical verification of photomagnetic phenomenon
- Synthesis and characterization of oligo-4-[(pyridin-3-ylimino)methyl]phenol
- Relationship between physicochemical properties, lipophilicity parameters, and local anesthetic activity of dibasic esters of phenylcarbamic acid
- Improved DPPH determination for antioxidant activity spectrophotometric assay
- Notes on notation of sodium oxofluoroaluminate anions
- Determination of the enthalpy of fusion of Na3FeF6
- Controlled solvothermal synthesis of PbS quasi-nanorods by calix[4]arene
- Palladium-catalyzed heck and suzuki coupling in glycerol
- Synthesis of new condensed and cyclized coumarin derivatives
- M. Hartman, O. Trnka, and M. Pohořelý: Fluidization behavior of oil-contaminated sand
Artikel in diesem Heft
- A review of methods for synthesis of nanostructured metals with emphasis on iron compounds
- Effect of selenium oxidation state on cadmium translocation in chamomile plants
- Optimization of ammonium nitrate concentration in single-stage continuous cultures of Aspergillus niger with biomass retention
- Behaviour of inorganic constituents of municipal sewage sludge during fluidized-bed combustion
- Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta area
- Structure of cyano-bridged Eu(III)—Co(III) bimetallic assembly and its application to photophysical verification of photomagnetic phenomenon
- Synthesis and characterization of oligo-4-[(pyridin-3-ylimino)methyl]phenol
- Relationship between physicochemical properties, lipophilicity parameters, and local anesthetic activity of dibasic esters of phenylcarbamic acid
- Improved DPPH determination for antioxidant activity spectrophotometric assay
- Notes on notation of sodium oxofluoroaluminate anions
- Determination of the enthalpy of fusion of Na3FeF6
- Controlled solvothermal synthesis of PbS quasi-nanorods by calix[4]arene
- Palladium-catalyzed heck and suzuki coupling in glycerol
- Synthesis of new condensed and cyclized coumarin derivatives
- M. Hartman, O. Trnka, and M. Pohořelý: Fluidization behavior of oil-contaminated sand