Abstract
Hydrodynamic behavior of oil-polluted particles of sand was investigated in transparent glass column. The onset of fluidization of sand beds increased with the oil content of the bed. An increase of cohesive forces related to the higher content of liquid (oil) caused deterioration of the quality of fluidization. An empirical correlation was developed to predict the dimensionless gas velocity that keeps the bed of sticky particles fluidized. Results of this work can be employed for the design of fluidized-bed remediation units for oil-polluted sands and soils.
[1] Alappat, B. J., Deon, S., Pre, P., Delebarre, A., and Viazzo, S., Ind. Eng. Chem. Res. 44, 1585 (2005). http://dx.doi.org/10.1021/ie040189d10.1021/ie040189dSuche in Google Scholar
[2] Lee, K. W., Wingate, F. P., and Boyd, J. W., J. Hazard. Mater. 12, 143 (1985). http://dx.doi.org/10.1016/0304-3894(85)85003-210.1016/0304-3894(85)85003-2Suche in Google Scholar
[3] Sevon, D. W. and Cooper, D. J., Process Saf. Environ. Prot. 68b, 277 (1990). Suche in Google Scholar
[4] Sevon, D. W. and Cooper, D. J., Chem. Eng. Sci. 46, 2983 (1991). http://dx.doi.org/10.1016/0009-2509(91)85003-G10.1016/0009-2509(91)85003-GSuche in Google Scholar
[5] Hartman, M. and Coughlin, R. W., Collect. Czech. Chem. Commun. 58, 1213 (1993). http://dx.doi.org/10.1135/cccc1993121310.1135/cccc19931213Suche in Google Scholar
[6] Hartman, M., Beran, Z., Svoboda, K., and Veselý, V., Collect. Czech. Chem. Commun. 60, 1 (1995). http://dx.doi.org/10.1135/cccc1995000110.1135/cccc19950001Suche in Google Scholar
[7] van Ommen, R. J., Coppens, M. O., van den Bleek, C. M., and Schouten, J. C., AIChE J. 46, 2183 (2000). http://dx.doi.org/10.1002/aic.69046111110.1002/aic.690461111Suche in Google Scholar
[8] Hartman, M., Trnka, O., and Svoboda, K., Chem. Eng. Commun. 193, 100 (2006). http://dx.doi.org/10.1080/00986449092357410.1080/009864490923574Suche in Google Scholar
[9] Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd Edition. Butterworth-Heinemann, Boston, 1991. Suche in Google Scholar
[10] Seville, J. P. K. and Clift, R., Powder Technol. 37, 117 (1984). http://dx.doi.org/10.1016/0032-5910(84)80011-X10.1016/0032-5910(84)80011-XSuche in Google Scholar
[11] Wright, P. C. and Raper, J. A., Powder Technol. 102, 37 (1999). http://dx.doi.org/10.1016/S0032-5910(98)00203-410.1016/S0032-5910(98)00203-4Suche in Google Scholar
[12] Kuwagi, K., Takano, K., and Horio, M., Powder Technol. 113, 287 (2000). http://dx.doi.org/10.1016/S0032-5910(00)00311-910.1016/S0032-5910(00)00311-9Suche in Google Scholar
[13] McLaughlin, L. J. and Rhodes, M. J., Powder Technol. 114, 213 (2001). http://dx.doi.org/10.1016/S0032-5910(00)00325-910.1016/S0032-5910(00)00325-9Suche in Google Scholar
[14] Passos, M. L. and Mujumdar, A. S., Powder Technol. 110, 222 (2000). http://dx.doi.org/10.1016/S0032-5910(99)00278-810.1016/S0032-5910(99)00278-8Suche in Google Scholar
[15] Gröger, T., Tüzün, U., and Heyes, D. M., Powder Technol. 133, 203 (2003). http://dx.doi.org/10.1016/S0032-5910(03)00093-710.1016/S0032-5910(03)00093-7Suche in Google Scholar
[16] Hartman, M., Trnka, O., and Pohořelý, M., in Proceedings of the 33rd International Conference of SSCHE. Tatranské Matliaire, Slovakia, 2006. Suche in Google Scholar
[17] Hartman, M., Trnka, O., and Svoboda, K., Ind. Eng. Chem. Res. 33, 1979 (1994). http://dx.doi.org/10.1021/ie00032a01210.1021/ie00032a012Suche in Google Scholar
[18] Ergun, S., Chem. Eng. Prog. 48, 89 (1952). Suche in Google Scholar
[19] Hartman, M., Trnka, O., Veselý, V., and Svoboda, K., Chem. Pap. 55, 149 (2001). Suche in Google Scholar
[20] Kocurek, J. and Hartman, M., Int. Chem. Eng. 31, 715 (1991). Suche in Google Scholar
[21] Hartman, M., Trnka, O., and Svoboda, K., Chem. Eng. Sci. 55, 6269 (2000). http://dx.doi.org/10.1016/S0009-2509(00)00409-710.1016/S0009-2509(00)00409-7Suche in Google Scholar
[22] Yates, J. G., Fundamentals of Fluidized-Bed Chemical Processes. Butterworths, London, 1983. Suche in Google Scholar
[23] van Velzen, D., Flamm, D. J., Langenkamp, H., and Casile, A., Can. J. Chem. Eng. 52, 156 (1974). http://dx.doi.org/10.1002/cjce.545052020410.1002/cjce.5450520204Suche in Google Scholar
[24] Lin, J. S., Chen, M. M., and Chao, B. T., AIChE J. 31, 465 (1985). http://dx.doi.org/10.1002/aic.69031031410.1002/aic.690310314Suche in Google Scholar
[25] Moslemian, D., Devanathan, N., and Dudukovic, M. P., Rev. Sci. Instrum. 63, 4361 (1992). http://dx.doi.org/10.1063/1.114373610.1063/1.1143736Suche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans
Artikel in diesem Heft
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans