Abstract
Hydrodynamic behavior of oil-polluted particles of sand was investigated in transparent glass column. The onset of fluidization of sand beds increased with the oil content of the bed. An increase of cohesive forces related to the higher content of liquid (oil) caused deterioration of the quality of fluidization. An empirical correlation was developed to predict the dimensionless gas velocity that keeps the bed of sticky particles fluidized. Results of this work can be employed for the design of fluidized-bed remediation units for oil-polluted sands and soils.
[1] Alappat, B. J., Deon, S., Pre, P., Delebarre, A., and Viazzo, S., Ind. Eng. Chem. Res. 44, 1585 (2005). http://dx.doi.org/10.1021/ie040189d10.1021/ie040189dSearch in Google Scholar
[2] Lee, K. W., Wingate, F. P., and Boyd, J. W., J. Hazard. Mater. 12, 143 (1985). http://dx.doi.org/10.1016/0304-3894(85)85003-210.1016/0304-3894(85)85003-2Search in Google Scholar
[3] Sevon, D. W. and Cooper, D. J., Process Saf. Environ. Prot. 68b, 277 (1990). Search in Google Scholar
[4] Sevon, D. W. and Cooper, D. J., Chem. Eng. Sci. 46, 2983 (1991). http://dx.doi.org/10.1016/0009-2509(91)85003-G10.1016/0009-2509(91)85003-GSearch in Google Scholar
[5] Hartman, M. and Coughlin, R. W., Collect. Czech. Chem. Commun. 58, 1213 (1993). http://dx.doi.org/10.1135/cccc1993121310.1135/cccc19931213Search in Google Scholar
[6] Hartman, M., Beran, Z., Svoboda, K., and Veselý, V., Collect. Czech. Chem. Commun. 60, 1 (1995). http://dx.doi.org/10.1135/cccc1995000110.1135/cccc19950001Search in Google Scholar
[7] van Ommen, R. J., Coppens, M. O., van den Bleek, C. M., and Schouten, J. C., AIChE J. 46, 2183 (2000). http://dx.doi.org/10.1002/aic.69046111110.1002/aic.690461111Search in Google Scholar
[8] Hartman, M., Trnka, O., and Svoboda, K., Chem. Eng. Commun. 193, 100 (2006). http://dx.doi.org/10.1080/00986449092357410.1080/009864490923574Search in Google Scholar
[9] Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd Edition. Butterworth-Heinemann, Boston, 1991. Search in Google Scholar
[10] Seville, J. P. K. and Clift, R., Powder Technol. 37, 117 (1984). http://dx.doi.org/10.1016/0032-5910(84)80011-X10.1016/0032-5910(84)80011-XSearch in Google Scholar
[11] Wright, P. C. and Raper, J. A., Powder Technol. 102, 37 (1999). http://dx.doi.org/10.1016/S0032-5910(98)00203-410.1016/S0032-5910(98)00203-4Search in Google Scholar
[12] Kuwagi, K., Takano, K., and Horio, M., Powder Technol. 113, 287 (2000). http://dx.doi.org/10.1016/S0032-5910(00)00311-910.1016/S0032-5910(00)00311-9Search in Google Scholar
[13] McLaughlin, L. J. and Rhodes, M. J., Powder Technol. 114, 213 (2001). http://dx.doi.org/10.1016/S0032-5910(00)00325-910.1016/S0032-5910(00)00325-9Search in Google Scholar
[14] Passos, M. L. and Mujumdar, A. S., Powder Technol. 110, 222 (2000). http://dx.doi.org/10.1016/S0032-5910(99)00278-810.1016/S0032-5910(99)00278-8Search in Google Scholar
[15] Gröger, T., Tüzün, U., and Heyes, D. M., Powder Technol. 133, 203 (2003). http://dx.doi.org/10.1016/S0032-5910(03)00093-710.1016/S0032-5910(03)00093-7Search in Google Scholar
[16] Hartman, M., Trnka, O., and Pohořelý, M., in Proceedings of the 33rd International Conference of SSCHE. Tatranské Matliaire, Slovakia, 2006. Search in Google Scholar
[17] Hartman, M., Trnka, O., and Svoboda, K., Ind. Eng. Chem. Res. 33, 1979 (1994). http://dx.doi.org/10.1021/ie00032a01210.1021/ie00032a012Search in Google Scholar
[18] Ergun, S., Chem. Eng. Prog. 48, 89 (1952). Search in Google Scholar
[19] Hartman, M., Trnka, O., Veselý, V., and Svoboda, K., Chem. Pap. 55, 149 (2001). Search in Google Scholar
[20] Kocurek, J. and Hartman, M., Int. Chem. Eng. 31, 715 (1991). Search in Google Scholar
[21] Hartman, M., Trnka, O., and Svoboda, K., Chem. Eng. Sci. 55, 6269 (2000). http://dx.doi.org/10.1016/S0009-2509(00)00409-710.1016/S0009-2509(00)00409-7Search in Google Scholar
[22] Yates, J. G., Fundamentals of Fluidized-Bed Chemical Processes. Butterworths, London, 1983. Search in Google Scholar
[23] van Velzen, D., Flamm, D. J., Langenkamp, H., and Casile, A., Can. J. Chem. Eng. 52, 156 (1974). http://dx.doi.org/10.1002/cjce.545052020410.1002/cjce.5450520204Search in Google Scholar
[24] Lin, J. S., Chen, M. M., and Chao, B. T., AIChE J. 31, 465 (1985). http://dx.doi.org/10.1002/aic.69031031410.1002/aic.690310314Search in Google Scholar
[25] Moslemian, D., Devanathan, N., and Dudukovic, M. P., Rev. Sci. Instrum. 63, 4361 (1992). http://dx.doi.org/10.1063/1.114373610.1063/1.1143736Search in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans
Articles in the same Issue
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans