Abstract
The geometries of N,N′-diphenylbenzene-1,4-diamine (DPPD), N-phenyl-N′-(1-phenylethyl)benzene-1,4-diamine (SPPD), N-(4-methylpentan-2-yl)-N′-phenylbenzene-1,4-diamine (6PPD), N-propan-2-yl-N′-phenylbenzene-1,4-diamine (IPPD), N-(2-methoxybenzyl)-N′-phenylbenzene-1,4-diamine (MBPPD), and N-phenyl-N′-(2-phenylpropan-2-yl)benzene-1,4-diamine (CPPD) as well as of their dehydrogenation products were optimized by the semiempirical AM1 method. The results support the idea of stable NB=CX structures formation during the consecutive dehydrogenation of SPPD, 6PPD, IPPD, and MBPPD antioxidants. The biradicals formed during the second step of dehydrogenation of substituted phenylenediamines might be important for their antioxidant effectiveness.
[1] Li, G. Y. and Koenig, J. L., Appl. Spectrosc. 56, 1390 (2002). http://dx.doi.org/10.1366/0003702026037767010.1366/00037020260377670Suche in Google Scholar
[2] Li, G. Y. and Koenig, J. L., Polym. Degrad. Stab. 81, 377 (2003). http://dx.doi.org/10.1016/S0141-3910(03)00109-510.1016/S0141-3910(03)00109-5Suche in Google Scholar
[3] Pospíšil, J. and Klemchuk, O. P., Oxidation Inhibition in Organic Materials, Vol. I. CRC Press, Boca Raton, Florida, USA, 1990. Suche in Google Scholar
[4] Cataldo, F., Eur. Polym. J. 38, 885 (2002). http://dx.doi.org/10.1016/S0014-3057(01)00248-810.1016/S0014-3057(01)00248-8Suche in Google Scholar
[5] Cataldo, F., Polym. Degrad. Stab. 72, 787 (2001). Suche in Google Scholar
[6] Landolt-Börnstein. New Series Vol. 9, Magnetic Properties of Free Radicals, Part c1, p. 556. Springer-Verlag, Berlin, 1980. Suche in Google Scholar
[7] Landolt-Börnstein. New Series Vol. 9, Magnetic Properties of Free Radicals, Part d2, p. 52. Springer-Verlag, Berlin, 1980. Suche in Google Scholar
[8] Male, R. and Allendoerfer, D., J. Phys. Chem. 92, 6237 (1988). http://dx.doi.org/10.1021/j100333a01410.1021/j100333a014Suche in Google Scholar
[9] Petr, A. and Dunsch, L., J. Phys. Chem. 100, 4867 (1996). http://dx.doi.org/10.1021/jp952965o10.1021/jp952965oSuche in Google Scholar
[10] Omelka, L., Ondrášová, S., Dunsch, L., Petr, A., and Staško, A., Monatsh. Chem. 132, 597 (2001). Suche in Google Scholar
[11] Burian, M., Omelka, L., Ondrášová, S., and Brezová, V., Monatsh. Chem. 134, 501 (2003). Suche in Google Scholar
[12] Boozer, C. E., Hammond, G. S., and Sen, J. N., J. Am. Chem. Soc. 77, 3233 (1955). http://dx.doi.org/10.1021/ja01617a02610.1021/ja01617a026Suche in Google Scholar
[13] Howard, J. A., in Free Radicals, Vol. II (Kochi, J. K., Editor), p. 51. Wiley, New York, 1973. Suche in Google Scholar
[14] García, H., Martí, V., Casades, I., Fornés, V., and Roth, H. D., Phys. Chem. Chem. Phys. 3, 2955 (2001). http://dx.doi.org/10.1039/b101383l10.1039/b101383lSuche in Google Scholar
[15] Flockhart, B. D., McLoughlin, L., and Pink, R. C., J. Catal. 25, 305 (1972). http://dx.doi.org/10.1016/0021-9517(72)90232-110.1016/0021-9517(72)90232-1Suche in Google Scholar
[16] Cibulková, Z., Šimon, P., Lehocký, P., and Balko, J., Polym. Degrad. Stab. 87, 479 (2005). http://dx.doi.org/10.1016/j.polymdegradstab.2004.10.00410.1016/j.polymdegradstab.2004.10.004Suche in Google Scholar
[17] Cibulková, Z., Šimon, P., Lehocký, P., and Balko, J., J. Therm. Anal. Cal. 80, 357 (2005). http://dx.doi.org/10.1007/s10973-005-0660-310.1007/s10973-005-0660-3Suche in Google Scholar
[18] Šimon, P. and Kolman, L’., J. Therm. Anal. Cal. 64, 813 (2001). http://dx.doi.org/10.1023/A:101156911719810.1023/A:1011569117198Suche in Google Scholar
[19] Šimon, P. and Kučma, A., J. Therm. Anal. Cal. 56, 1107 (1999). http://dx.doi.org/10.1023/A:101014881056910.1023/A:1010148810569Suche in Google Scholar
[20] Šimon, P., Kolman, L’., Niklová, I., and Schmidt, Š., J. Am. Oil Chem. Soc. 77, 639 (2000). Suche in Google Scholar
[21] Šimon, P., Veverka, M., and Okuliar, J., Int. J. Pharm. 270, 21 (2004). http://dx.doi.org/10.1016/j.ijpharm.2003.10.00310.1016/j.ijpharm.2003.10.003Suche in Google Scholar
[22] Lehocký, P., Syrový, L., and Kavun, C. M., in RAPRA Conference Proceedings RubberChem 2001. Brussels, 2001. Suche in Google Scholar
[23] Luzhkov, V. B. and Yakushchenko, T. N., J. Struct. Chem. 31, 24 (1990). http://dx.doi.org/10.1007/BF0075200810.1007/BF00752008Suche in Google Scholar
[24] Yamamura, T., Suzuki, K., Yamaguchi, T., and Nishiyama, T., Bull. Chem. Soc. Jpn 70, 413 (1997). http://dx.doi.org/10.1246/bcsj.70.41310.1246/bcsj.70.413Suche in Google Scholar
[25] Choi, C. H. and Kertesz, M., Macromolecules 30, 620 (1997). http://dx.doi.org/10.1021/ma961120n10.1021/ma961120nSuche in Google Scholar
[26] Boyle, A., J. Mol. Struct. (Theochem) 469, 15 (1999). http://dx.doi.org/10.1016/S0166-1280(98)00518-110.1016/S0166-1280(98)00518-1Suche in Google Scholar
[27] Nishiyama, T., Yamaguchi, T., Fukui, T., and Tomi, K., Polym. Degrad. Stab. 64, 33 (1999). http://dx.doi.org/10.1016/S0141-3910(98)00168-210.1016/S0141-3910(98)00168-2Suche in Google Scholar
[28] Budyka, M. F. and Zyubina, T. S., Russ. J. Phys. Chem. 74, S347 (2000). Suche in Google Scholar
[29] Pankratov, A. N. and Shchavlev, A. E., J. Anal. Chem. 56, 123 (2001). http://dx.doi.org/10.1023/A:100943851742910.1023/A:1009438517429Suche in Google Scholar
[30] Klein, E., Cibulková, Z., and Lukeš, V., Polym. Degrad. Stab. 88, 548 (2005). http://dx.doi.org/10.1016/j.polymdegradstab.2004.12.01910.1016/j.polymdegradstab.2004.12.019Suche in Google Scholar
[31] Xiao, J. M., Gong, X. D., Chiu, Y. N., and Xiao, H. M., J. Mol. Struct. (Theochem) 489, 151 (1999). http://dx.doi.org/10.1016/S0166-1280(99)00050-010.1016/S0166-1280(99)00050-0Suche in Google Scholar
[32] Ito, A., Ota, K., Yoshizawa, K., Tanaka, K., and Yamabe, T., Chem. Phys. Lett. 223, 27 (1994). http://dx.doi.org/10.1016/0009-2614(94)00416-110.1016/0009-2614(94)00416-1Suche in Google Scholar
[33] Tretiakov, I. V. and Cable, J. R., J. Chem. Phys. 107, 9715 (1997). http://dx.doi.org/10.1063/1.47526810.1063/1.475268Suche in Google Scholar
[34] Sett, P., De, A. K., Chattopadhyay, S., and Mallick, P. K., Chem. Phys. 276, 211 (2002). http://dx.doi.org/10.1016/S0301-0104(01)00571-710.1016/S0301-0104(01)00571-7Suche in Google Scholar
[35] Liu, W. and Lund, A., J. Mol. Struct., 733, 13 (2005). http://dx.doi.org/10.1016/j.molstruc.2004.07.03210.1016/j.molstruc.2004.07.032Suche in Google Scholar
[36] Kortišová, I., Breza, M., and Šimon, P., J. Mol. Struct. (Theochem) 723, 23 (2005). http://dx.doi.org/10.1016/j.theochem.2005.02.01310.1016/j.theochem.2005.02.013Suche in Google Scholar
[37] Luzhkov, V. B., Chem. Phys. 314, 211 (2005). http://dx.doi.org/10.1016/j.chemphys.2005.03.00110.1016/j.chemphys.2005.03.001Suche in Google Scholar
[38] Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., J. Am. Chem. Soc. 107, 3902 (1985). http://dx.doi.org/10.1021/ja00299a02410.1021/ja00299a024Suche in Google Scholar
[39] HYPERCHEM rel. 7.5 for Windows, Hypercube, Inc., 2003. Suche in Google Scholar
[40] Polovková, J., Kortišová, I., Gatial, A., and Breza, M., Polym. Degrad. Stab. 91, 1775 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2005.11.01610.1016/j.polymdegradstab.2005.11.016Suche in Google Scholar
[41] Breza, M. and Brezová, V., Collect. Czech. Chem. Commun. 60, 1081 (1995). http://dx.doi.org/10.1135/cccc1995108110.1135/cccc19951081Suche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Evaluation and interlaboratory validation of a GC-MS method for analysis of pesticide residues in teas
- Protective effects of vitamin E against CCl4-induced hepatotoxicity in rabbits
- Influence of composition on corroding process of Na2O-K2O-CaO-ZrO2-SiO2 glasses
- Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas—liquid systems
- Modelling of composting of food waste in a column reactor
- Comparison of chemical properties of food products processed by conventional and ohmic heating
- Electrical resistivity and photoluminescence of lead iodide crystals
- Effect of microwave irradiation on the reactivity of chloroarenes in Suzuki—Miyaura reaction
- Kinetics of extraction of coal-tar pitch components with supercritical carbon dioxide
- Mechanism of photocatalytic oxidation of gaseous ethanol
- Kinetics and mechanism of hydroboration of oct-1-and-4-ene by dimeric dialkylboranes
- Reaction sites of N,N′-substituted p-phenylenediamine antioxidants
- Theoretical study of solvent effect on π-EDA complexation II. Complex between TCNE and two benzene molecules
Artikel in diesem Heft
- Evaluation and interlaboratory validation of a GC-MS method for analysis of pesticide residues in teas
- Protective effects of vitamin E against CCl4-induced hepatotoxicity in rabbits
- Influence of composition on corroding process of Na2O-K2O-CaO-ZrO2-SiO2 glasses
- Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas—liquid systems
- Modelling of composting of food waste in a column reactor
- Comparison of chemical properties of food products processed by conventional and ohmic heating
- Electrical resistivity and photoluminescence of lead iodide crystals
- Effect of microwave irradiation on the reactivity of chloroarenes in Suzuki—Miyaura reaction
- Kinetics of extraction of coal-tar pitch components with supercritical carbon dioxide
- Mechanism of photocatalytic oxidation of gaseous ethanol
- Kinetics and mechanism of hydroboration of oct-1-and-4-ene by dimeric dialkylboranes
- Reaction sites of N,N′-substituted p-phenylenediamine antioxidants
- Theoretical study of solvent effect on π-EDA complexation II. Complex between TCNE and two benzene molecules