Abstract
The geometries of N,N′-diphenylbenzene-1,4-diamine (DPPD), N-phenyl-N′-(1-phenylethyl)benzene-1,4-diamine (SPPD), N-(4-methylpentan-2-yl)-N′-phenylbenzene-1,4-diamine (6PPD), N-propan-2-yl-N′-phenylbenzene-1,4-diamine (IPPD), N-(2-methoxybenzyl)-N′-phenylbenzene-1,4-diamine (MBPPD), and N-phenyl-N′-(2-phenylpropan-2-yl)benzene-1,4-diamine (CPPD) as well as of their dehydrogenation products were optimized by the semiempirical AM1 method. The results support the idea of stable NB=CX structures formation during the consecutive dehydrogenation of SPPD, 6PPD, IPPD, and MBPPD antioxidants. The biradicals formed during the second step of dehydrogenation of substituted phenylenediamines might be important for their antioxidant effectiveness.
[1] Li, G. Y. and Koenig, J. L., Appl. Spectrosc. 56, 1390 (2002). http://dx.doi.org/10.1366/0003702026037767010.1366/00037020260377670Search in Google Scholar
[2] Li, G. Y. and Koenig, J. L., Polym. Degrad. Stab. 81, 377 (2003). http://dx.doi.org/10.1016/S0141-3910(03)00109-510.1016/S0141-3910(03)00109-5Search in Google Scholar
[3] Pospíšil, J. and Klemchuk, O. P., Oxidation Inhibition in Organic Materials, Vol. I. CRC Press, Boca Raton, Florida, USA, 1990. Search in Google Scholar
[4] Cataldo, F., Eur. Polym. J. 38, 885 (2002). http://dx.doi.org/10.1016/S0014-3057(01)00248-810.1016/S0014-3057(01)00248-8Search in Google Scholar
[5] Cataldo, F., Polym. Degrad. Stab. 72, 787 (2001). Search in Google Scholar
[6] Landolt-Börnstein. New Series Vol. 9, Magnetic Properties of Free Radicals, Part c1, p. 556. Springer-Verlag, Berlin, 1980. Search in Google Scholar
[7] Landolt-Börnstein. New Series Vol. 9, Magnetic Properties of Free Radicals, Part d2, p. 52. Springer-Verlag, Berlin, 1980. Search in Google Scholar
[8] Male, R. and Allendoerfer, D., J. Phys. Chem. 92, 6237 (1988). http://dx.doi.org/10.1021/j100333a01410.1021/j100333a014Search in Google Scholar
[9] Petr, A. and Dunsch, L., J. Phys. Chem. 100, 4867 (1996). http://dx.doi.org/10.1021/jp952965o10.1021/jp952965oSearch in Google Scholar
[10] Omelka, L., Ondrášová, S., Dunsch, L., Petr, A., and Staško, A., Monatsh. Chem. 132, 597 (2001). Search in Google Scholar
[11] Burian, M., Omelka, L., Ondrášová, S., and Brezová, V., Monatsh. Chem. 134, 501 (2003). Search in Google Scholar
[12] Boozer, C. E., Hammond, G. S., and Sen, J. N., J. Am. Chem. Soc. 77, 3233 (1955). http://dx.doi.org/10.1021/ja01617a02610.1021/ja01617a026Search in Google Scholar
[13] Howard, J. A., in Free Radicals, Vol. II (Kochi, J. K., Editor), p. 51. Wiley, New York, 1973. Search in Google Scholar
[14] García, H., Martí, V., Casades, I., Fornés, V., and Roth, H. D., Phys. Chem. Chem. Phys. 3, 2955 (2001). http://dx.doi.org/10.1039/b101383l10.1039/b101383lSearch in Google Scholar
[15] Flockhart, B. D., McLoughlin, L., and Pink, R. C., J. Catal. 25, 305 (1972). http://dx.doi.org/10.1016/0021-9517(72)90232-110.1016/0021-9517(72)90232-1Search in Google Scholar
[16] Cibulková, Z., Šimon, P., Lehocký, P., and Balko, J., Polym. Degrad. Stab. 87, 479 (2005). http://dx.doi.org/10.1016/j.polymdegradstab.2004.10.00410.1016/j.polymdegradstab.2004.10.004Search in Google Scholar
[17] Cibulková, Z., Šimon, P., Lehocký, P., and Balko, J., J. Therm. Anal. Cal. 80, 357 (2005). http://dx.doi.org/10.1007/s10973-005-0660-310.1007/s10973-005-0660-3Search in Google Scholar
[18] Šimon, P. and Kolman, L’., J. Therm. Anal. Cal. 64, 813 (2001). http://dx.doi.org/10.1023/A:101156911719810.1023/A:1011569117198Search in Google Scholar
[19] Šimon, P. and Kučma, A., J. Therm. Anal. Cal. 56, 1107 (1999). http://dx.doi.org/10.1023/A:101014881056910.1023/A:1010148810569Search in Google Scholar
[20] Šimon, P., Kolman, L’., Niklová, I., and Schmidt, Š., J. Am. Oil Chem. Soc. 77, 639 (2000). Search in Google Scholar
[21] Šimon, P., Veverka, M., and Okuliar, J., Int. J. Pharm. 270, 21 (2004). http://dx.doi.org/10.1016/j.ijpharm.2003.10.00310.1016/j.ijpharm.2003.10.003Search in Google Scholar
[22] Lehocký, P., Syrový, L., and Kavun, C. M., in RAPRA Conference Proceedings RubberChem 2001. Brussels, 2001. Search in Google Scholar
[23] Luzhkov, V. B. and Yakushchenko, T. N., J. Struct. Chem. 31, 24 (1990). http://dx.doi.org/10.1007/BF0075200810.1007/BF00752008Search in Google Scholar
[24] Yamamura, T., Suzuki, K., Yamaguchi, T., and Nishiyama, T., Bull. Chem. Soc. Jpn 70, 413 (1997). http://dx.doi.org/10.1246/bcsj.70.41310.1246/bcsj.70.413Search in Google Scholar
[25] Choi, C. H. and Kertesz, M., Macromolecules 30, 620 (1997). http://dx.doi.org/10.1021/ma961120n10.1021/ma961120nSearch in Google Scholar
[26] Boyle, A., J. Mol. Struct. (Theochem) 469, 15 (1999). http://dx.doi.org/10.1016/S0166-1280(98)00518-110.1016/S0166-1280(98)00518-1Search in Google Scholar
[27] Nishiyama, T., Yamaguchi, T., Fukui, T., and Tomi, K., Polym. Degrad. Stab. 64, 33 (1999). http://dx.doi.org/10.1016/S0141-3910(98)00168-210.1016/S0141-3910(98)00168-2Search in Google Scholar
[28] Budyka, M. F. and Zyubina, T. S., Russ. J. Phys. Chem. 74, S347 (2000). Search in Google Scholar
[29] Pankratov, A. N. and Shchavlev, A. E., J. Anal. Chem. 56, 123 (2001). http://dx.doi.org/10.1023/A:100943851742910.1023/A:1009438517429Search in Google Scholar
[30] Klein, E., Cibulková, Z., and Lukeš, V., Polym. Degrad. Stab. 88, 548 (2005). http://dx.doi.org/10.1016/j.polymdegradstab.2004.12.01910.1016/j.polymdegradstab.2004.12.019Search in Google Scholar
[31] Xiao, J. M., Gong, X. D., Chiu, Y. N., and Xiao, H. M., J. Mol. Struct. (Theochem) 489, 151 (1999). http://dx.doi.org/10.1016/S0166-1280(99)00050-010.1016/S0166-1280(99)00050-0Search in Google Scholar
[32] Ito, A., Ota, K., Yoshizawa, K., Tanaka, K., and Yamabe, T., Chem. Phys. Lett. 223, 27 (1994). http://dx.doi.org/10.1016/0009-2614(94)00416-110.1016/0009-2614(94)00416-1Search in Google Scholar
[33] Tretiakov, I. V. and Cable, J. R., J. Chem. Phys. 107, 9715 (1997). http://dx.doi.org/10.1063/1.47526810.1063/1.475268Search in Google Scholar
[34] Sett, P., De, A. K., Chattopadhyay, S., and Mallick, P. K., Chem. Phys. 276, 211 (2002). http://dx.doi.org/10.1016/S0301-0104(01)00571-710.1016/S0301-0104(01)00571-7Search in Google Scholar
[35] Liu, W. and Lund, A., J. Mol. Struct., 733, 13 (2005). http://dx.doi.org/10.1016/j.molstruc.2004.07.03210.1016/j.molstruc.2004.07.032Search in Google Scholar
[36] Kortišová, I., Breza, M., and Šimon, P., J. Mol. Struct. (Theochem) 723, 23 (2005). http://dx.doi.org/10.1016/j.theochem.2005.02.01310.1016/j.theochem.2005.02.013Search in Google Scholar
[37] Luzhkov, V. B., Chem. Phys. 314, 211 (2005). http://dx.doi.org/10.1016/j.chemphys.2005.03.00110.1016/j.chemphys.2005.03.001Search in Google Scholar
[38] Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., J. Am. Chem. Soc. 107, 3902 (1985). http://dx.doi.org/10.1021/ja00299a02410.1021/ja00299a024Search in Google Scholar
[39] HYPERCHEM rel. 7.5 for Windows, Hypercube, Inc., 2003. Search in Google Scholar
[40] Polovková, J., Kortišová, I., Gatial, A., and Breza, M., Polym. Degrad. Stab. 91, 1775 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2005.11.01610.1016/j.polymdegradstab.2005.11.016Search in Google Scholar
[41] Breza, M. and Brezová, V., Collect. Czech. Chem. Commun. 60, 1081 (1995). http://dx.doi.org/10.1135/cccc1995108110.1135/cccc19951081Search in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Evaluation and interlaboratory validation of a GC-MS method for analysis of pesticide residues in teas
- Protective effects of vitamin E against CCl4-induced hepatotoxicity in rabbits
- Influence of composition on corroding process of Na2O-K2O-CaO-ZrO2-SiO2 glasses
- Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas—liquid systems
- Modelling of composting of food waste in a column reactor
- Comparison of chemical properties of food products processed by conventional and ohmic heating
- Electrical resistivity and photoluminescence of lead iodide crystals
- Effect of microwave irradiation on the reactivity of chloroarenes in Suzuki—Miyaura reaction
- Kinetics of extraction of coal-tar pitch components with supercritical carbon dioxide
- Mechanism of photocatalytic oxidation of gaseous ethanol
- Kinetics and mechanism of hydroboration of oct-1-and-4-ene by dimeric dialkylboranes
- Reaction sites of N,N′-substituted p-phenylenediamine antioxidants
- Theoretical study of solvent effect on π-EDA complexation II. Complex between TCNE and two benzene molecules
Articles in the same Issue
- Evaluation and interlaboratory validation of a GC-MS method for analysis of pesticide residues in teas
- Protective effects of vitamin E against CCl4-induced hepatotoxicity in rabbits
- Influence of composition on corroding process of Na2O-K2O-CaO-ZrO2-SiO2 glasses
- Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas—liquid systems
- Modelling of composting of food waste in a column reactor
- Comparison of chemical properties of food products processed by conventional and ohmic heating
- Electrical resistivity and photoluminescence of lead iodide crystals
- Effect of microwave irradiation on the reactivity of chloroarenes in Suzuki—Miyaura reaction
- Kinetics of extraction of coal-tar pitch components with supercritical carbon dioxide
- Mechanism of photocatalytic oxidation of gaseous ethanol
- Kinetics and mechanism of hydroboration of oct-1-and-4-ene by dimeric dialkylboranes
- Reaction sites of N,N′-substituted p-phenylenediamine antioxidants
- Theoretical study of solvent effect on π-EDA complexation II. Complex between TCNE and two benzene molecules