Startseite Effect of chloride ions on the kinetics of nitrobenzene reduction by powdered iron
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of chloride ions on the kinetics of nitrobenzene reduction by powdered iron

  • M. Heželová EMAIL logo , L’. Pikna , D. Kladeková und L. Lux
Veröffentlicht/Copyright: 1. Oktober 2006
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effect of different chloride ions concentrations on the reactivity of iron particles was studied using chronopotentiometry. It was found that the increase of Cl− ions concentration accelerated anodic dissolution of iron, thus enhancing its surface reactivity. This fact was confirmed also by the rate of nitrobenzene reduction by iron particles. The reactivity of powder particles of various sizes, hence of different specific surface, was investigated in chloride-free and chloride-containing acetate buffer electrolytes. Experimental results indicated that the rate of nitrobenzene reduction in the presence of chloride ions in the reaction system is faster in comparison with the rate in chloride-free medium for each studied grain fraction of particulate material.

[1] Agrawal, A. and Tratnyek, P. G., Environ. Sci. Technol. 30, 153 (1996). http://dx.doi.org/10.1021/es950211h10.1021/es950211hSuche in Google Scholar

[2] Delvin, J. F., Klausen, J., and Schwarzenbach, R. P., Environ. Sci. Technol. 32, 1941 (1998). http://dx.doi.org/10.1021/es970896g10.1021/es970896gSuche in Google Scholar

[3] Tratnyek, P. G., Scherer, M. M., Deng, B. L., and Hu, S. D., Water Res. 35, 4435 (2001). http://dx.doi.org/10.1016/S0043-1354(01)00165-810.1016/S0043-1354(01)00165-8Suche in Google Scholar

[4] Lavine, B. K., Auslander, G., and Ritter, J., Microchem. J. 70, 69 (2001). http://dx.doi.org/10.1016/S0026-265X(01)00075-310.1016/S0026-265X(01)00075-3Suche in Google Scholar

[5] Choe, S., Lee, S. H., Chang, Y. Y., Hwang, K. Y., and Khim, J., Chemosphere 42, 367 (2001). http://dx.doi.org/10.1016/S0045-6535(00)00147-810.1016/S0045-6535(00)00147-8Suche in Google Scholar

[6] Mantha, R., Biswas, N., Taylor, K. E., and Bewtra, J. K., Water Environ. Res. 74, 280 (2002). http://dx.doi.org/10.2175/106143002X14001710.2175/106143002X140017Suche in Google Scholar

[7] Oh, S. Y., Cha, D. K., and Chiu, P. C., Environ. Sci. Technol. 36, 2178 (2002). http://dx.doi.org/10.1021/es011474g10.1021/es011474gSuche in Google Scholar

[8] Scherer, M. M., Johnson, K., Westall, J. C., and Tratnyek, P. G., Environ. Sci. Technol. 35, 2804 (2001). http://dx.doi.org/10.1021/es001685610.1021/es0016856Suche in Google Scholar

[9] Azambuja, D. S. and Muller, I. L., Corros. Sci. 36, 1835 (1994). http://dx.doi.org/10.1016/0010-938X(94)90022-110.1016/0010-938X(94)90022-1Suche in Google Scholar

[10] Pikna, L’., Lux, L., and Fečková, Z., Transactions of the Universities of Košice 2005, 34. Suche in Google Scholar

[11] Pikna, L’., Fečková, Z., and Lux, L., Chem. Anal. (Warsaw) 49, 825 (2004). Suche in Google Scholar

[12] Kladeková, D., Heželová, M., Lux, L., and Nižník, Š., Transactions of the Universities of Košice 2004, 54. Suche in Google Scholar

[13] Kladeková, D., Heželová, M., and Lux, L., Particul. Sci. Technol., in press. Suche in Google Scholar

[14] Gálová, M., Lux, L., and Oriňáková, R., J. Solid State Electr. 2, 2 (1998). http://dx.doi.org/10.1007/s10008005005710.1007/s100080050057Suche in Google Scholar

[15] Klausen, J., Ranke, J., and Schwarzenbach, R. P., Chemosphere 44, 511 (2001). http://dx.doi.org/10.1016/S0045-6535(00)00385-410.1016/S0045-6535(00)00385-4Suche in Google Scholar

[16] Bockris, J. O’M. and Reddy, A. K. N., Modern Electrochemistry, Vol. 2, p. 1267. Plenum Press, New York, 1970. Suche in Google Scholar

Published Online: 2006-10-1
Published in Print: 2006-10-1

© 2006 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-006-0065-1/pdf?lang=de
Button zum nach oben scrollen