Startseite First and Second Order Asymptotic Bias Correction of Nonlinear Estimators in a Non-Parametric Setting and an Application to the Smoothed Maximum Score Estimator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

First and Second Order Asymptotic Bias Correction of Nonlinear Estimators in a Non-Parametric Setting and an Application to the Smoothed Maximum Score Estimator

  • Emma M Iglesias
Veröffentlicht/Copyright: 11. Mai 2010
Veröffentlichen auch Sie bei De Gruyter Brill

This paper derives, extending the work of Rilstone, Srivastava and Ullah (1996), an analytical expression that takes account of first and second order asymptotic bias of nonlinear estimators in a non-parametric setting. By using moment expansions, we obtain a first and a second order bias removal mechanism. We specialize our results on the smoothed maximum score estimator of the coefficient vector of a binary response model in the dynamic setting of De Jong and Woutersen (2009). First order asymptotic theory has already been provided, although very large samples are needed to reach the asymptotic outcome of normality in this model. We provide a second order asymptotic expansion and, with the appropriate estimated quantities, we design a new bias-corrected estimator. Finally, a simulation study shows the advantages of our proposed bias-correction procedure.

Published Online: 2010-5-11

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.2202/1558-3708.1736/html
Button zum nach oben scrollen