Startseite Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form

  • Efthymios G Pavlidis , Ivan Paya und David A Peel
Veröffentlicht/Copyright: 11. Mai 2010
Veröffentlichen auch Sie bei De Gruyter Brill

The specification of Smooth Transition Regression models consists of a sequence of tests, which are typically based on the assumption of i.i.d. errors. In this paper we examine the impact of conditional heteroskedasticity and investigate the performance of several heteroskedasticity robust versions. Simulation evidence indicates that conventional tests can frequently result in finding spurious nonlinearity. Conversely, when the true process is nonlinear in mean, the tests appear to have low size adjusted power and can lead to the selection of misspecified models. The above deficiencies also hold for tests based on Heteroskedasticity Consistent Covariance Matrix Estimators but not for the Fixed Design Wild Bootstrap. We highlight the importance of robust inference through empirical applications.

Published Online: 2010-5-11

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.2202/1558-3708.1702/html
Button zum nach oben scrollen