Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
-
Merrill D. Birkner
, Alan E. Hubbard , Mark J. van der Laan , Christine F. Skibola , Christine M. Hegedus and Martyn T. Smith
A new data filtering method for SELDI-TOF MS proteomic spectra data is described. We examined technical repeats (2 per subject) of intensity versus m/z (mass/charge) of bone marrow cell lysate for two groups of childhood leukemia patients: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). As others have noted, the type of data processing as well as experimental variability can have a disproportionate impact on the list of ``interesting'' proteins (see Baggerly et al. (2004)). We propose a list of processing and multiple testing techniques to correct for 1) background drift; 2) filtering using smooth regression and cross-validated bandwidth selection; 3) peak finding; and 4) methods to correct for multiple testing (van der Laan et al. (2005)). The result is a list of proteins (indexed by m/z) where average expression is significantly different among disease (or treatment, etc.) groups. The procedures are intended to provide a sensible and statistically driven algorithm, which we argue provides a list of proteins that have a significant difference in expression. Given no sources of unmeasured bias (such as confounding of experimental conditions with disease status), proteins found to be statistically significant using this technique have a low probability of being false positives.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Low-Order Conditional Independence Graphs for Inferring Genetic Networks
- A Generalized Clustering Problem, with Application to DNA Microarrays
- A Bayes Regression Approach to Array-CGH Data
- Statistical Selection of Maintenance Genes for Normalization of Gene Expressions
- Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs
- Dimension Reduction for Classification with Gene Expression Microarray Data
- A New Type of Stochastic Dependence Revealed in Gene Expression Data
- A New Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity
- Quality Optimised Analysis of General Paired Microarray Experiments
- Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
- Cross-Validated Bagged Prediction of Survival
- Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage
- Quantile-Function Based Null Distribution in Resampling Based Multiple Testing
- Combining Results of Microarray Experiments: A Rank Aggregation Approach
- Model Selection for Mixtures of Mutagenetic Trees
- Pseudo-likelihood for Non-reversible Nucleotide Substitution Models with Neighbour Dependent Rates
- A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting
- Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
- Using Complexity for the Estimation of Bayesian Networks
- Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies
- Examining Protein Structure and Similarities by Spectral Analysis Technique
- Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data
- Approximate Sample Size Calculations with Microarray Data: An Illustration
- Numerical Solutions for Patterns Statistics on Markov Chains
- A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion
- A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
- Validation in Genomics: CpG Island Methylation Revisited
- An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data
- Letter to the Editor
- Treating Expression Levels of Different Genes as a Sample in Microarray Data Analysis: Is it Worth a Risk?
- Reader's Reaction
- Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)
Articles in the same Issue
- Article
- Low-Order Conditional Independence Graphs for Inferring Genetic Networks
- A Generalized Clustering Problem, with Application to DNA Microarrays
- A Bayes Regression Approach to Array-CGH Data
- Statistical Selection of Maintenance Genes for Normalization of Gene Expressions
- Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs
- Dimension Reduction for Classification with Gene Expression Microarray Data
- A New Type of Stochastic Dependence Revealed in Gene Expression Data
- A New Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity
- Quality Optimised Analysis of General Paired Microarray Experiments
- Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
- Cross-Validated Bagged Prediction of Survival
- Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage
- Quantile-Function Based Null Distribution in Resampling Based Multiple Testing
- Combining Results of Microarray Experiments: A Rank Aggregation Approach
- Model Selection for Mixtures of Mutagenetic Trees
- Pseudo-likelihood for Non-reversible Nucleotide Substitution Models with Neighbour Dependent Rates
- A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting
- Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
- Using Complexity for the Estimation of Bayesian Networks
- Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies
- Examining Protein Structure and Similarities by Spectral Analysis Technique
- Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data
- Approximate Sample Size Calculations with Microarray Data: An Illustration
- Numerical Solutions for Patterns Statistics on Markov Chains
- A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion
- A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
- Validation in Genomics: CpG Island Methylation Revisited
- An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data
- Letter to the Editor
- Treating Expression Levels of Different Genes as a Sample in Microarray Data Analysis: Is it Worth a Risk?
- Reader's Reaction
- Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)