Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
-
Rashi Gupta
Pixel saturation occurs when the pixel intensity exceeds the scanner upper threshold of detection and the recorded pixel intensity is then truncated at the threshold. Truncation of the pixel intensity causes the estimates of gene expression (i.e., intensity) to be biased. Microarray experiments are commonly affected by saturated pixels; as a result all higher level analyses are made on these biased gene expression estimates. In this paper, we propose a method for improving the quality of the signal for cDNA microarrays by making use of several scans at varying scanner sensitivities. For each spot, pixel level intensity readings are given as input to a Bayesian hierarchical model. The model uses the pixel intensities of the spot to provide a posterior distribution of the true expression level of the corresponding genes. The parameters of the hierarchical model are estimated jointly with these expression levels, thus performing an integrated analysis of the measurement data. The method improves in all ranges the accuracy with which intensities can be estimated and extends the dynamic range of measured gene expression at the high end. The method is generic and can be applied to data from any organism and for imaging with any scanner. Results from a real data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Low-Order Conditional Independence Graphs for Inferring Genetic Networks
- A Generalized Clustering Problem, with Application to DNA Microarrays
- A Bayes Regression Approach to Array-CGH Data
- Statistical Selection of Maintenance Genes for Normalization of Gene Expressions
- Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs
- Dimension Reduction for Classification with Gene Expression Microarray Data
- A New Type of Stochastic Dependence Revealed in Gene Expression Data
- A New Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity
- Quality Optimised Analysis of General Paired Microarray Experiments
- Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
- Cross-Validated Bagged Prediction of Survival
- Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage
- Quantile-Function Based Null Distribution in Resampling Based Multiple Testing
- Combining Results of Microarray Experiments: A Rank Aggregation Approach
- Model Selection for Mixtures of Mutagenetic Trees
- Pseudo-likelihood for Non-reversible Nucleotide Substitution Models with Neighbour Dependent Rates
- A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting
- Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
- Using Complexity for the Estimation of Bayesian Networks
- Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies
- Examining Protein Structure and Similarities by Spectral Analysis Technique
- Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data
- Approximate Sample Size Calculations with Microarray Data: An Illustration
- Numerical Solutions for Patterns Statistics on Markov Chains
- A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion
- A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
- Validation in Genomics: CpG Island Methylation Revisited
- An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data
- Letter to the Editor
- Treating Expression Levels of Different Genes as a Sample in Microarray Data Analysis: Is it Worth a Risk?
- Reader's Reaction
- Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)
Articles in the same Issue
- Article
- Low-Order Conditional Independence Graphs for Inferring Genetic Networks
- A Generalized Clustering Problem, with Application to DNA Microarrays
- A Bayes Regression Approach to Array-CGH Data
- Statistical Selection of Maintenance Genes for Normalization of Gene Expressions
- Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs
- Dimension Reduction for Classification with Gene Expression Microarray Data
- A New Type of Stochastic Dependence Revealed in Gene Expression Data
- A New Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity
- Quality Optimised Analysis of General Paired Microarray Experiments
- Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
- Cross-Validated Bagged Prediction of Survival
- Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage
- Quantile-Function Based Null Distribution in Resampling Based Multiple Testing
- Combining Results of Microarray Experiments: A Rank Aggregation Approach
- Model Selection for Mixtures of Mutagenetic Trees
- Pseudo-likelihood for Non-reversible Nucleotide Substitution Models with Neighbour Dependent Rates
- A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting
- Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
- Using Complexity for the Estimation of Bayesian Networks
- Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies
- Examining Protein Structure and Similarities by Spectral Analysis Technique
- Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data
- Approximate Sample Size Calculations with Microarray Data: An Illustration
- Numerical Solutions for Patterns Statistics on Markov Chains
- A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion
- A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
- Validation in Genomics: CpG Island Methylation Revisited
- An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data
- Letter to the Editor
- Treating Expression Levels of Different Genes as a Sample in Microarray Data Analysis: Is it Worth a Risk?
- Reader's Reaction
- Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)