Home Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
Article
Licensed
Unlicensed Requires Authentication

Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities

  • Rashi Gupta , Petri Auvinen , Andrew Thomas and Elja Arjas
Published/Copyright: August 28, 2006

Pixel saturation occurs when the pixel intensity exceeds the scanner upper threshold of detection and the recorded pixel intensity is then truncated at the threshold. Truncation of the pixel intensity causes the estimates of gene expression (i.e., intensity) to be biased. Microarray experiments are commonly affected by saturated pixels; as a result all higher level analyses are made on these biased gene expression estimates. In this paper, we propose a method for improving the quality of the signal for cDNA microarrays by making use of several scans at varying scanner sensitivities. For each spot, pixel level intensity readings are given as input to a Bayesian hierarchical model. The model uses the pixel intensities of the spot to provide a posterior distribution of the true expression level of the corresponding genes. The parameters of the hierarchical model are estimated jointly with these expression levels, thus performing an integrated analysis of the measurement data. The method improves in all ranges the accuracy with which intensities can be estimated and extends the dynamic range of measured gene expression at the high end. The method is generic and can be applied to data from any organism and for imaging with any scanner. Results from a real data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan.

Published Online: 2006-8-28

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Articles in the same Issue

  1. Article
  2. Low-Order Conditional Independence Graphs for Inferring Genetic Networks
  3. A Generalized Clustering Problem, with Application to DNA Microarrays
  4. A Bayes Regression Approach to Array-CGH Data
  5. Statistical Selection of Maintenance Genes for Normalization of Gene Expressions
  6. Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs
  7. Dimension Reduction for Classification with Gene Expression Microarray Data
  8. A New Type of Stochastic Dependence Revealed in Gene Expression Data
  9. A New Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity
  10. Quality Optimised Analysis of General Paired Microarray Experiments
  11. Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
  12. Cross-Validated Bagged Prediction of Survival
  13. Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage
  14. Quantile-Function Based Null Distribution in Resampling Based Multiple Testing
  15. Combining Results of Microarray Experiments: A Rank Aggregation Approach
  16. Model Selection for Mixtures of Mutagenetic Trees
  17. Pseudo-likelihood for Non-reversible Nucleotide Substitution Models with Neighbour Dependent Rates
  18. A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting
  19. Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
  20. Using Complexity for the Estimation of Bayesian Networks
  21. Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies
  22. Examining Protein Structure and Similarities by Spectral Analysis Technique
  23. Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data
  24. Approximate Sample Size Calculations with Microarray Data: An Illustration
  25. Numerical Solutions for Patterns Statistics on Markov Chains
  26. A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion
  27. A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
  28. Validation in Genomics: CpG Island Methylation Revisited
  29. An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data
  30. Letter to the Editor
  31. Treating Expression Levels of Different Genes as a Sample in Microarray Data Analysis: Is it Worth a Risk?
  32. Reader's Reaction
  33. Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.2202/1544-6115.1220/html
Scroll to top button