Home Model Selection for Mixtures of Mutagenetic Trees
Article
Licensed
Unlicensed Requires Authentication

Model Selection for Mixtures of Mutagenetic Trees

  • Junming Yin , Niko Beerenwinkel , Jörg Rahnenführer and Thomas Lengauer
Published/Copyright: June 23, 2006

The evolution of drug resistance in HIV is characterized by the accumulation of resistance-associated mutations in the HIV genome. Mutagenetic trees, a family of restricted Bayesian tree models, have been applied to infer the order and rate of occurrence of these mutations. Understanding and predicting this evolutionary process is an important prerequisite for the rational design of antiretroviral therapies. In practice, mixtures models of K mutagenetic trees provide more flexibility and are often more appropriate for modelling observed mutational patterns.Here, we investigate the model selection problem for K-mutagenetic trees mixture models. We evaluate several classical model selection criteria including cross-validation, the Bayesian Information Criterion (BIC), and the Akaike Information Criterion. We also use the empirical Bayes method by constructing a prior probability distribution for the parameters of a mutagenetic trees mixture model and deriving the posterior probability of the model. In addition to the model dimension, we consider the redundancy of a mixture model, which is measured by comparing the topologies of trees within a mixture model. Based on the redundancy, we propose a new model selection criterion, which is a modification of the BIC.Experimental results on simulated and on real HIV data show that the classical criteria tend to select models with far too many tree components. Only cross-validation and the modified BIC recover the correct number of trees and the tree topologies most of the time. At the same optimal performance, the runtime of the new BIC modification is about one order of magnitude lower. Thus, this model selection criterion can also be used for large data sets for which cross-validation becomes computationally infeasible.

Published Online: 2006-6-23

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Articles in the same Issue

  1. Article
  2. Low-Order Conditional Independence Graphs for Inferring Genetic Networks
  3. A Generalized Clustering Problem, with Application to DNA Microarrays
  4. A Bayes Regression Approach to Array-CGH Data
  5. Statistical Selection of Maintenance Genes for Normalization of Gene Expressions
  6. Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs
  7. Dimension Reduction for Classification with Gene Expression Microarray Data
  8. A New Type of Stochastic Dependence Revealed in Gene Expression Data
  9. A New Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity
  10. Quality Optimised Analysis of General Paired Microarray Experiments
  11. Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data
  12. Cross-Validated Bagged Prediction of Survival
  13. Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage
  14. Quantile-Function Based Null Distribution in Resampling Based Multiple Testing
  15. Combining Results of Microarray Experiments: A Rank Aggregation Approach
  16. Model Selection for Mixtures of Mutagenetic Trees
  17. Pseudo-likelihood for Non-reversible Nucleotide Substitution Models with Neighbour Dependent Rates
  18. A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting
  19. Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities
  20. Using Complexity for the Estimation of Bayesian Networks
  21. Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies
  22. Examining Protein Structure and Similarities by Spectral Analysis Technique
  23. Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data
  24. Approximate Sample Size Calculations with Microarray Data: An Illustration
  25. Numerical Solutions for Patterns Statistics on Markov Chains
  26. A Heuristic Bayesian Method for Segmenting DNA Sequence Alignments and Detecting Evidence for Recombination and Gene Conversion
  27. A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
  28. Validation in Genomics: CpG Island Methylation Revisited
  29. An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data
  30. Letter to the Editor
  31. Treating Expression Levels of Different Genes as a Sample in Microarray Data Analysis: Is it Worth a Risk?
  32. Reader's Reaction
  33. Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2202/1544-6115.1164/html?lang=en
Scroll to top button