A Method for Evaluating the Impact of Individual Haplotypes on Disease Incidence in Molecular Epidemiology Studies
-
E. S Venkatraman
Estimation of the association between haplotypes and disease from a case-control study is considered. Assuming a single ``disease haplotype'' leads to the increased risk, attention focusses on the relative risks associated with a single copy, or two copies of the disease haplotype, relative to individuals with no copies. In this setting, case frequencies of the haplotype pairs are in Hardy-Weinberg Equilibrium (HWE) only if the combined influence of the two copies of the disease haplotype on risk is multiplicative. Thus, imputation cannot rely on the assumption of HWE for cases. A method is presented for obtaining estimates of the relative risks, making use of the EM algorithm and the assumption of HWE only for controls. The method accounts for the additional variation in the estimates due to the imputation of expected frequencies of haplotype pairs from ambiguous genotypes. A simulation study shows that the resulting confidence intervals have nominal coverage, and that the methods based on the assumption of HWE for both cases and controls can lead to bias.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Using Alpha Wisely: Improving Power to Detect Multiple QTL
- Relating HIV-1 Sequence Variation to Replication Capacity via Trees and Forests
- Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments
- Asymptotic Optimality of Likelihood-Based Cross-Validation
- Using Importance Sampling to Improve Simulation in Linkage Analysis
- Model-Based Assignment and Inference of Protein Backbone Nuclear Magnetic Resonances
- Error-Rate and Decision-Theoretic Methods of Multiple Testing: Which Genes Have High Objective Probabilities of Differential Expression?
- Evaluation of Multiple Models to Distinguish Closely Related Forms of Disease Using DNA Microarray Data: an Application to Multiple Myeloma
- Saturation and Quantization Reduction in Microarray Experiments using Two Scans at Different Sensitivities
- Combining Nearest Neighbor Classifiers Versus Cross-Validation Selection
- Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates
- Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate
- Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives
- Calculating the Statistical Significance of Changes in Pathway Activity From Gene Expression Data
- A Family-Based Association Test for Repeatedly Measured Quantitative Traits Adjusting for Unknown Environmental and/or Polygenic Effects
- Deletion/Substitution/Addition Algorithm in Learning with Applications in Genomics
- Classifying Gene Expression Profiles from Pairwise mRNA Comparisons
- Hierarchical Bayesian Neural Network for Gene Expression Temporal Patterns
- A Mixed Model Approach to Identify Yeast Transcriptional Regulatory Motifs via Microarray Experiments
- Mammalian Genomes Ease Location of Human DNA Functional Segments but Not Their Description
- On the Dependence Structure of Sequence Alignment Scores Calculated with Multiple Scoring Matrices
- Increasing Power for Tests of Genetic Association in the Presence of Phenotype and/or Genotype Error by Use of Double-Sampling
- A Method for Evaluating the Impact of Individual Haplotypes on Disease Incidence in Molecular Epidemiology Studies
- Statistical Methods for Identifying Conserved Residues in Multiple Sequence Alignment
- MergeMaid: R Tools for Merging and Cross-Study Validation of Gene Expression Data
- Sparse Inverse of Covariance Matrix of QTL Effects with Incomplete Marker Data
- Maximum Likelihood for Genome Phylogeny on Gene Content
- Confidence Levels for the Comparison of Microarray Experiments
- PLS Dimension Reduction for Classification with Microarray Data
- Statistical Analysis of Genomic Tag Data
- Statistical Analysis of Adsorption Models for Oligonucleotide Microarrays
- Statistical Significance Threshold Criteria For Analysis of Microarray Gene Expression Data
- A Compendium to Ensure Computational Reproducibility in High-Dimensional Classification Tasks
- Validation and Discovery in Markov Models of Genetics Data
- Making Sense of High-Throughput Protein-Protein Interaction Data
- Reader's Reaction
- Reader Reaction
- Response to Foulkes and De Gruttola
- Software Communication
- BayesMendel: an R Environment for Mendelian Risk Prediction
- Letter to the Editor
- Concerns About Unreliable Data from Spotted cDNA Microarrays Due to Cross-Hybridization and Sequence Errors
Articles in the same Issue
- Article
- Using Alpha Wisely: Improving Power to Detect Multiple QTL
- Relating HIV-1 Sequence Variation to Replication Capacity via Trees and Forests
- Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments
- Asymptotic Optimality of Likelihood-Based Cross-Validation
- Using Importance Sampling to Improve Simulation in Linkage Analysis
- Model-Based Assignment and Inference of Protein Backbone Nuclear Magnetic Resonances
- Error-Rate and Decision-Theoretic Methods of Multiple Testing: Which Genes Have High Objective Probabilities of Differential Expression?
- Evaluation of Multiple Models to Distinguish Closely Related Forms of Disease Using DNA Microarray Data: an Application to Multiple Myeloma
- Saturation and Quantization Reduction in Microarray Experiments using Two Scans at Different Sensitivities
- Combining Nearest Neighbor Classifiers Versus Cross-Validation Selection
- Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates
- Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate
- Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives
- Calculating the Statistical Significance of Changes in Pathway Activity From Gene Expression Data
- A Family-Based Association Test for Repeatedly Measured Quantitative Traits Adjusting for Unknown Environmental and/or Polygenic Effects
- Deletion/Substitution/Addition Algorithm in Learning with Applications in Genomics
- Classifying Gene Expression Profiles from Pairwise mRNA Comparisons
- Hierarchical Bayesian Neural Network for Gene Expression Temporal Patterns
- A Mixed Model Approach to Identify Yeast Transcriptional Regulatory Motifs via Microarray Experiments
- Mammalian Genomes Ease Location of Human DNA Functional Segments but Not Their Description
- On the Dependence Structure of Sequence Alignment Scores Calculated with Multiple Scoring Matrices
- Increasing Power for Tests of Genetic Association in the Presence of Phenotype and/or Genotype Error by Use of Double-Sampling
- A Method for Evaluating the Impact of Individual Haplotypes on Disease Incidence in Molecular Epidemiology Studies
- Statistical Methods for Identifying Conserved Residues in Multiple Sequence Alignment
- MergeMaid: R Tools for Merging and Cross-Study Validation of Gene Expression Data
- Sparse Inverse of Covariance Matrix of QTL Effects with Incomplete Marker Data
- Maximum Likelihood for Genome Phylogeny on Gene Content
- Confidence Levels for the Comparison of Microarray Experiments
- PLS Dimension Reduction for Classification with Microarray Data
- Statistical Analysis of Genomic Tag Data
- Statistical Analysis of Adsorption Models for Oligonucleotide Microarrays
- Statistical Significance Threshold Criteria For Analysis of Microarray Gene Expression Data
- A Compendium to Ensure Computational Reproducibility in High-Dimensional Classification Tasks
- Validation and Discovery in Markov Models of Genetics Data
- Making Sense of High-Throughput Protein-Protein Interaction Data
- Reader's Reaction
- Reader Reaction
- Response to Foulkes and De Gruttola
- Software Communication
- BayesMendel: an R Environment for Mendelian Risk Prediction
- Letter to the Editor
- Concerns About Unreliable Data from Spotted cDNA Microarrays Due to Cross-Hybridization and Sequence Errors