Startseite Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10·4H2O, a new hydrated aluminum phosphatesulfate mineral from Chimanta massif, Venezuela: Description and crystal structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10·4H2O, a new hydrated aluminum phosphatesulfate mineral from Chimanta massif, Venezuela: Description and crystal structure

  • Ermanno Galli , Maria Franca Brigatti EMAIL logo , Daniele Malferrari , Francesco Sauro und Jo De Waele
Veröffentlicht/Copyright: 7. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Rossiantonite, ideally Al3(PO4)(SO4)2(OH)2(H2O)10·4H2O, triclinic (space group P1̄), a = 10.3410(5), b = 10.9600(5), c = 11.1446(5) Å, a = 86.985(2), b = 65.727(2), g = 75.064(2)°, V = 1110.5(1) Å3, Z = 2, is a new mineral from the Akopan-Dal Cin cave system in the Chimanta massif (Guyana Shield, Venezuela). The mineral occurs as small (≤0.15 mm) and transparent crystals in a white to slightly pink fine-grained sand, filling spaces between boulders of weathered quartz sandstone. Associated phases are gypsum, sanjuanite, rare alunite, quartz and micro-spherules of amorphous silica.

Rossiantonite is colorless with a white streak and vitreous luster. The mineral is brittle with irregular to sub-conchoidal fracture and it shows a poorly developed cleavage. Rossiantonite is biaxial and not pleochroic, with mean refractive index of 1.504.

The calculated density is 1.958 g/cm3. Electron microprobe analyses, with H2O measured by thermogravimetric analysis, provided the following empirical formula based on 28 O apfu: Al2.96Fe0.03P1.01S2H30.02O28. The five strongest lines in the X‑ray powder diffraction pattern, expressed as d (Å), I, (hkl) are: 4.647, 100, (210); 9.12, 56, (100); 4.006, 53, (220); 8.02, 40, (110); 7.12, 33, (011).

The crystal structure, refined using 3550 unique reflections to R = 0.0292, is built of PO4 and AlO6 polyhedral rings, creating complex chains parallel b by sharing the OH-OH edge belonging to the Al(3) polyhedron. Three symmetrically independent Al sites can be identified, namely: Al(1), Al(2), and Al(3). Tetrahedral sites, occupied by P, share all their apexes with AlO6 octahedra. Unshared octahedral apexes are occupied by water molecules. Four additional water molecules are placed in between the previously identified chains. Two oxygen tetrahedra, occupied by S atoms, are connected along the chains by means of weak hydrogen bonding. The rossiantonite structure shows similarities with minerals belonging to the sanjuanite-destinezite group.

Received: 2012-10-27
Accepted: 2013-6-10
Published Online: 2015-3-7
Published in Print: 2013-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Review article. The crystal structure and vibrational spectroscopy of jarosite and alunite minerals
  2. Versatile monazite: Resolving geological records and solving challenges in materials science. Petrogenesis of the Kulyk Lake monazite-apatite-Fe(Ti)-oxide occurrence revealed using in-situ LA-(MC)-ICP-MS trace element mapping, U-Pb dating, and Sm-Nd isotope systematics on monazite
  3. Amorphous Materials: Properties, structure, and durability. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy
  4. Unlocking the secrets of Al-tobermorite in Roman seawater concrete
  5. The determination of hydrogen positions in superhydrous phase B
  6. Carlfrancisite: Mn3 2+(Mn2+,Mg,Fe3+,Al)42(As3+O3)2(As5+O4)4[(Si,As5+)O4]6[(As5+,Si)O4]2(OH)42, a new arseno-silicate mineral from the Kombat mine, Otavi Valley, Namibia
  7. Petrology and geochemistry of lunar granite 12032,366-19 and implications for lunar granite petrogenesis
  8. Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China
  9. Controls of P-T path and element mobility on the formation of corundum pseudomorphs in Paleoproterozoic high-pressure anorthosite from Sittampundi, Tamil Nadu, India
  10. Aluminum speeds up the hydrothermal alteration of olivine
  11. Iron pairs in beryl: New insights from electron paramagnetic resonance, synchrotron X-ray absorption spectroscopy, and ab initio calculations
  12. Effects of fluid and melt density and structure on high-pressure and high-temperature experimental studies of hydrogen isotope partitioning between coexisting melt and aqueous fluid
  13. DFT simulation of the occurrences and correlation of gold and arsenic in pyrite
  14. Crystal structure and hydration/dehydration behavior of Na2Mg(SO4)2·16H2O: A new hydrate phase observed under Mars-relevant conditions
  15. The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 °C: Implications for re-equilibration of hydroxyl in volcanic phenocrysts
  16. Quantification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy
  17. Spin transition of Fe2+ in ringwoodite (Mg,Fe)SiO4 at high pressures
  18. P-V-T relations of γ-Ca3(PO4)2 tuite determined by in situ X-ray diffraction in a large-volume high-pressure apparatus
  19. Bonding and electronic changes in rhodochrosite at high pressure
  20. Growth of calcium carbonate in the presence of Se(VI) in silica hydrogel
  21. Thermodynamic properties of saponite, nontronite, and vermiculite derived from calorimetric measurements
  22. Far-infrared spectra of synthetic dioctahedral muscovite and muscovite–tobelite series micas: Characterization and assignment of the interlayer I–Oinner and I–Oouter stretching bands
  23. Phosphorus partitioning between olivine and melt: An experimental study in the system Mg2SiO4-Ca2Al2Si2O9-NaAlSi3O8-Mg3(PO4)2
  24. Olivine from spinel peridotite xenoliths: Hydroxyl incorporation and mineral composition
  25. Determination of the melting temperature of kaolinite by means of the Z-method
  26. Darrellhenryite, Na(LiAl2)Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup
  27. Nizamoffite, Mn2+Zn2(PO4)2(H2O)4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire
  28. Mcalpineite from the Gambatesa mine, Italy, and redefinition of the species
  29. Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10·4H2O, a new hydrated aluminum phosphatesulfate mineral from Chimanta massif, Venezuela: Description and crystal structure
  30. Book Review
  31. Book Review
  32. Erratum
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2013.4393/html
Button zum nach oben scrollen