Startseite Re-investigation of the crystal structure of enstatite under high-pressure conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Re-investigation of the crystal structure of enstatite under high-pressure conditions

  • Benedetta Periotto EMAIL logo , Tonci Balić-Žunić , Fabrizio Nestola , Anna Katerinopoulou und Ross J. Angel
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X-ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study significantly improved the accuracy of structural parameters in comparison to a previous high-pressure structural study, allowing a more detailed examination of structural behavior of orthoenstatite at high pressures and a comparison to other more recent structural studies performed on orthopyroxenes with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression is mostly governed by significant volume decrease of the Mg1 and Mg2 octahedra, affecting in turn the kink of the tetrahedral chains, especially the TB chain of larger SiO4 tetrahedra. The Mg2 polyhedron undergoes the largest volume variation, 8.7%, due especially to the strong contraction of the longest bond distance (Mg2-O3B), whereas Mg1 polyhedral volume decreases by about 7.4%. The compressional behavior of the tetrahedral sites is quite different from previously published data. The TA and TB tetrahedral volumes decrease by about 2.8 and 1.8%, respectively, and no discontinuities can be observed in the pressure range investigated. Using the data on the pure orthoenstatite as reference, we can confirm the basic influences of element substitutions on the evolution of the crystal structure with pressure.

Received: 2012-3-5
Accepted: 2012-6-26
Published Online: 2015-4-2
Published in Print: 2012-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. MSA Roebling medal lecture. Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China
  2. Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U-Pb dating
  3. In situ hot-stage AFM study of the dissolution of the barite (001) surface in water at 30–55 °C
  4. A multi-domain gem-grade Brazilian apatite
  5. High-temperature structural behaviors of anhydrous wadsleyite and forsterite
  6. Rates and mechanism of Y, REE, and Cr diffusion in garnet
  7. EPR discrimination of microcrystalline calcite geomaterials
  8. Crystal chemistry of Bi- and Mn-bearing vesuvianite from Långban, Sweden
  9. Cation ordering in Pb2+-bearing, Mn3+-rich pargasite from Långban, Sweden
  10. Long-term solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter
  11. The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals
  12. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard
  13. The temperature and compositional dependence of disordering in Fe-bearing dolomites
  14. Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis
  15. Reactions of strontium anorthite with H2O+CaCl2 fluids at 500 °C and high pressure: Kinetic information from in situ synchrotron-radiation XRF analyses of the fluid
  16. Solubility of xenotime in a 2 M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500 °C
  17. Elastic and anelastic anomalies due to spin-state transitions in orthorhombic perovskite from isoelectronic behavior of Co3+ and Fe2+
  18. Accurate determination of ferric iron in garnets by bulk Mössbauer spectroscopy and synchrotron micro-XANES
  19. Re-investigation of the crystal structure of enstatite under high-pressure conditions
  20. Second-order P6̄c2-P31c transition and structural crystallography of the cyclosilicate benitoite, BaTiSi3O9, at high pressure
  21. High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction
  22. Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties
  23. Witzkeite: A new rare nitrate-sulphate mineral from a guano deposit at Punta de Lobos, Chile
  24. Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia
  25. Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12
  26. Letter. A natural photoelectrochemical cell for water splitting: Implications for early Earth and Mars
  27. Letter. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures
  28. Letter. The crystal structure of bartelkeite, with a revised chemical formula, PbFeGeVI(Ge2IVO7) (OH)2·H2O, isotypic with high-pressure P21/m lawsonite
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2012.4157/html
Button zum nach oben scrollen