Startseite Solubility of xenotime in a 2 M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500 °C
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solubility of xenotime in a 2 M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500 °C

  • Elizabeth A. Tanis EMAIL logo , Adam Simon , Oliver Tschauner , Paul Chow , Yuming Xiao , Gouyin Shen , John M. Hanchar und Mark Frank
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Constraining mass transfer of the rare earth elements (REE) and high field strength elements (HFSE) from subducted oceanic crust and metasediments to the mantle wedge is fundamental toward interpreting processes that affect trace element mobility in subduction zone environments. Experimental studies of the partitioning of trace elements involving aqueous fluids at P-T conditions appropriate for slab-mantle wedge conditions are complicated by the difficulties in retrieving the fluid. Here we present the results from an application of an in situ technique that permits quantitative determination of element concentrations in aqueous fluid at geologically relevant supercritical conditions. We focus on pressures and temperatures appropriate for devolatilization-induced element transfer in subduction zone environments, and conditions obtained during regional metamorphism. In this study, we used a hydrothermal diamond-anvil cell (HDAC) and in situ synchrotron X-ray fluorescence (SXRF) to quantify the concentration of Y, an important trace element often used as a proxy for the heavy REE in geologic systems, in a xenotime-saturated 2 M HCl-aqueous fluid at 1.19 to 2.6 GPa and 300-500 °C. At these pressures and temperatures the solubility of yttrium ranges from 2400 to 2850 ppm. We find that the concentration of Y decreases with increasing fluid density. These new data, combined with published data generated from experiments done at lower pressure, in fluids of nearly identical composition and also NaCl-H2O fluids, constrain the effects of pressure and temperature on the ability of aqueous fluid containing Cl to scavenge and transport Y and, by analogy, the HREE. Although the physical properties of Y are similar to the high field strength elements, Y exhibits geochemical behavior that is analogous to the heavy rare earth elements (HREE).

Received: 2011-9-23
Accepted: 2012-6-6
Published Online: 2015-4-2
Published in Print: 2012-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. MSA Roebling medal lecture. Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China
  2. Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U-Pb dating
  3. In situ hot-stage AFM study of the dissolution of the barite (001) surface in water at 30–55 °C
  4. A multi-domain gem-grade Brazilian apatite
  5. High-temperature structural behaviors of anhydrous wadsleyite and forsterite
  6. Rates and mechanism of Y, REE, and Cr diffusion in garnet
  7. EPR discrimination of microcrystalline calcite geomaterials
  8. Crystal chemistry of Bi- and Mn-bearing vesuvianite from Långban, Sweden
  9. Cation ordering in Pb2+-bearing, Mn3+-rich pargasite from Långban, Sweden
  10. Long-term solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter
  11. The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals
  12. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard
  13. The temperature and compositional dependence of disordering in Fe-bearing dolomites
  14. Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis
  15. Reactions of strontium anorthite with H2O+CaCl2 fluids at 500 °C and high pressure: Kinetic information from in situ synchrotron-radiation XRF analyses of the fluid
  16. Solubility of xenotime in a 2 M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500 °C
  17. Elastic and anelastic anomalies due to spin-state transitions in orthorhombic perovskite from isoelectronic behavior of Co3+ and Fe2+
  18. Accurate determination of ferric iron in garnets by bulk Mössbauer spectroscopy and synchrotron micro-XANES
  19. Re-investigation of the crystal structure of enstatite under high-pressure conditions
  20. Second-order P6̄c2-P31c transition and structural crystallography of the cyclosilicate benitoite, BaTiSi3O9, at high pressure
  21. High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction
  22. Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties
  23. Witzkeite: A new rare nitrate-sulphate mineral from a guano deposit at Punta de Lobos, Chile
  24. Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia
  25. Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12
  26. Letter. A natural photoelectrochemical cell for water splitting: Implications for early Earth and Mars
  27. Letter. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures
  28. Letter. The crystal structure of bartelkeite, with a revised chemical formula, PbFeGeVI(Ge2IVO7) (OH)2·H2O, isotypic with high-pressure P21/m lawsonite
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2012.4009/html
Button zum nach oben scrollen