Home Packing systematics of the silica polymorphs: The role played by O-O nonbonded interactions in the compression of quartz
Article
Licensed
Unlicensed Requires Authentication

Packing systematics of the silica polymorphs: The role played by O-O nonbonded interactions in the compression of quartz

  • Richard M. Thompson EMAIL logo and Robert T. Downs
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

The anion skeleton of quartz is a distorted body-centered cubic (BCC) arrangement. A hypothetical ideal BCC crystal structure for quartz has been derived and used to locate and describe the unoccupied tetrahedral sites, quantify the distortion of the quartz anion arrangement from ideal BCC, and characterize the role of tetrahedral distortion and O-O interactions in the compression of quartz. Quartz has eight crystallographically nonequivalent tetrahedra, one occupied by silicon and seven unoccupied. These tetrahedra completely fill space, something that cannot be done using only regular tetrahedra. In ideal BCC quartz, the nonequivalent tetrahedra are identical in size and shape with a unique geometry and are referred to as Sommerville tetrahedra. In reality, the unoccupied tetrahedra of quartz are very distorted from both regular and Sommerville tetrahedra. Changes in the unoccupied tetrahedra are responsible for most of the compression in quartz with pressure, as the volume of the Si tetrahedron decreases by <1% over 10.2 GPa, but the volume of the bulk structure decreases by almost 16%. The ideal BCC quartz has been used to quantify the distortion from ideal BCC of the O arrangement in quartz at several pressures up to 10.2 GPa. Distortion decreases by over 60% across this domain. Other parameters have been derived to quantify the distortion of the unoccupied and occupied tetrahedra in quartz from Sommerville tetrahedra, the characteristic tetrahedra of BCC. By all measures, the anion packing in quartz approaches ideal BCC as pressure increases. The compression mechanisms of quartz are compared to those of cristobalite and coesite. Si-O-Si angle-bending controls compression in each of these minerals. The bulk moduli of these minerals are shown to correlate with average nearest intertetrahedral anion distances, consistent with the hypothesis that anion-anion interactions stiffen the Si-O-Si angle as inter-tetrahedral anion distances decrease. The tetrahedral distortion in quartz with pressure is attributed to anion-anion interaction, and is not considered a compression mechanism.

Received: 2009-3-13
Accepted: 2009-9-10
Published Online: 2015-4-2
Published in Print: 2010-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to P-T conditions
  2. Slavikite—Revision of chemical composition and crystal structure
  3. Anisotropic elasticity of jarosite: A high-P synchrotron XRD study
  4. Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation
  5. Characterization of Al-Si ordering state in an alkali feldspar using atom location by channeling-enhanced microanalysis (ALCHEMI)
  6. The relative stability of stoichiometrically related natural and synthetic double salts
  7. Free energy of formation of zircon based on solubility measurements at high temperature and pressure
  8. Structure refinement of a synthetic knorringite, Mg3(Cr0.8Mg0.1Si0.1)2(SiO4)3
  9. A mineral tracer toward high-resolution dust provenance on the Chinese Loess Plateau: SEM, TEM, and sulfur isotopes of sulfate inclusions in biotite
  10. High-resolution TEM study of jimthompsonite, chesterite, and chain-width disorder in Archean ultramafic rocks from Isua, West Greenland
  11. Retrograde hydration sequence in disordered Mg amphiboles: A TEM investigation
  12. Can electron energy-loss spectroscopy (EELS) be used to quantify hydrogen in minerals from the O K edge?
  13. Texture analysis of a turbostratically disordered Ca-montmorillonite
  14. Packing systematics of the silica polymorphs: The role played by O-O nonbonded interactions in the compression of quartz
  15. Calorimetric study of the surface energy of forsterite
  16. Crystallographic texture of the magnetite-hematite transformation: Evidence for topotactic relationships in natural samples from Quadrilátero Ferrífero, Brazil
  17. Semi-ordered crystalline structure of the Santa Olalla vermiculite inferred from X-ray powder diffraction
  18. Stishovite single-crystal growth and application to silicon self-diffusion measurements
  19. Density of dry peridotite magma at high pressure using an X-ray absorption method
  20. The crystal-structure and vacancy distribution in 6C pyrrhotite
  21. Thermal modification of hematite-ilmenite intergrowths in the Ecstall pluton, British Columbia, Canada
  22. A new Al-rich hydroxylian pseudorutile from Kalimantan, Indonesia
  23. Lapeyreite, Cu3O[AsO3(OH)]2·0.75H2O, a new mineral: Its description and crystal structure
  24. High P-T phase relation of magnesian (Mg0.7Fe0.3) staurolite compositon in the system FeO-MgO-Al2O3-SiO2-H2O: Implications for prograde high-pressure history of ultrahigh-temperature metamorphic rocks
  25. Letter: Hibonite-(Fe), (Fe,Mg)Al12O19, a new alteration mineral from the Allende meteorite
  26. Letter: Ion irradiation of the TiO2 polymorphs and cassiterite
  27. Letter: Corundum + orthopyroxene ± spinel intergrowths in an ultrahigh-temperature Al-Mg granulite from the Southern Marginal Zone, Limpopo Belt, South Africa
  28. Letter: Fe3+ spin transition in CaFe2O4 at high pressure
  29. Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates
Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3241/html
Scroll to top button