Home Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared
Article
Licensed
Unlicensed Requires Authentication

Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared

  • Céleste D.M. Dufresne EMAIL logo , Penelope L. King , M. Darby Dyar and Kim N. Dalby
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

A suite of basaltic glasses were examined to determine how subtle compositional changes affect mid-infrared spectra (650 to 5400 cm-1). Glasses with different SiO2, FeO total, Fe3+/Fe2+, and alkali contents were synthesized in a gas-mixing furnace and analyzed using electron probe microanalysis, Mössbauer spectroscopy, and micro-reflectance Fourier transform infrared spectroscopy. The major mid-infrared spectral feature in silicate glasses is a broad peak located at ~900 to 1100 cm-1 arising from Si-(Al-)O asymmetric stretching vibrational modes. To accurately compare spectra of different glass compositions, we have applied the Kramers-Kronig (KK) transform to our spectra and examined the resulting absorption peak (KK abs. peak). The location of the KK abs. peak shifts to higher wavenumbers as SiO2 content increases (1031-1054 cm-1 with SiO2 from 47.18 to 55.57 wt%). For basaltic glasses with near-constant Al/(Al+Si), the full-width half maximum of the KK abs. peak decreases as alkali content increases (235-188 cm-1 with Na2O+K2O contents from 0.07 to 3.74 wt%). In contrast, the location and shape of the KK abs. peak are not affected by variations in total FeO (6.06-16.30 wt%) and Fe3+/Fe2+ (0.05-1.17). Our results show that KK transformed mid-infrared spectra of basaltic glasses may be used to determine the SiO2 contents in basaltic glasses, irrespective of FeOtotal and Fe3+/Fe2+, and the alkali contents if Al/(Al+Si) is known. These observations will aid in the interpretation of laboratory and remotely sensed IR spectra

Received: 2008-10-9
Accepted: 2009-7-14
Published Online: 2015-4-1
Published in Print: 2009-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Review Paper. Microbe-clay mineral interactions
  2. Chemical substitutions, paragenetic relations, and physical conditions of formation of högbomite in the Sittampundi layered anorthosite complex, South India
  3. Miguelromeroite, the Mn analogue of sainfeldite, and redefinition of villyaellenite as an ordered intermediate in the sainfeldite-miguelromeroite series
  4. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold
  5. A statistical reassessment of the evidence for the racemic distribution of quartz enantiomorphs
  6. On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96·nH2O: A natural microporous material of interest in nuclear technology
  7. The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions
  8. Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared
  9. Influence of cation size on the low-temperature heat capacity of alkaline earth metasilicate glasses
  10. The high-pressure–high-temperature behavior of bassanite
  11. Geochemistry of reversible hydratable tephra from the Trans Mexican Volcanic Belt
  12. Physical contradictions and remedies using simple polythermal equations of state
  13. Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3·~7.75H2O] and paracoquimbite [Fe2(SO4)3·9H2O]
  14. Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction
  15. In situ Raman spectroscopy of MgSiO3 enstatite up to 1550 K
  16. Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures
  17. New insights into smectite illitization: A zoned K-bentonite revisited
  18. The hydrothermal conversion of kaolinite to kalsilite: Influence of time, temperature, and pH
  19. Sideronatrite, Na2Fe(SO4)2(OH)·3H2O: Crystal structure of the orthorhombic polytype and OD character analysis
  20. Anharmonic OH vibrations in brucite: Small pressure-induced redshift in the range 0–22 GPa
  21. Structural properties of biologically controlled hydrozincite: An HRTEM and NMR spectroscopic study
  22. Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations
  23. Letter. Crystal structure of argentopyrite, AgFe2S3, and its relationship with cubanite
  24. Letter. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon
  25. Letter. The influence of atomic size and charge of dissolved species on the diffusivity and viscosity of silicate melts
  26. Letter. Si-Al distribution in high-pressure CaAl4Si2O11 phase: A 29Si and 27Al NMR study
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2009.3113/html?lang=en
Scroll to top button