Startseite Synthesis and crystal structure of the feldspathoid CsAlSiO4: An open-framework silicate and potential nuclear waste disposal phase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and crystal structure of the feldspathoid CsAlSiO4: An open-framework silicate and potential nuclear waste disposal phase

  • G. Diego Gatta , N. Rotiroti , P.F. Zanazzi , M. Rieder , M. Drabek , Z. Weiss und R. Klaska
Veröffentlicht/Copyright: 1. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Crystalline CsAlSiO4 was synthesized from a stoichiometric mixture of Al2O3 + SiO2 + Cs2O (plus excess water) in Ag-capsules at hydrostatic pressure of 0.1 GPa and temperature of 695 °C. The duration of synthesis was 46 h. The crystal structure of CsAlSiO4 was investigated by single-crystal X-ray diffraction. The structure is orthorhombic with Pc21n space group and lattice parameters: a = 9.414(1), b = 5.435(1), and c = 8.875(1) Å. Because of the orthohexagonal relation between b and a (a ≈ b√3), within the standard uncertainty on the lattice parameters, a hexagonal superlattice exists, which is responsible for twinning. The crystals are twinned by reflection, with twin planes (110) and (310): twinning in both cases is by reticular merohedry with twin index 2 and hexagonal twin lattice (LT). The transformation from the lattice of the individual (Lind) to LT is given by: aT = aind - bind, bT = 2bind, and cT = cind. The refinement was initiated using the previously published atomic coordinates for RbAlSiO4. The final least-square cycles were conducted with anisotropic displacement parameters. R1 = 3.04% for 66 parameters and 2531 unique reflections. For a more reliable crystallographic comparison the crystal structure of RbAlSiO4 is reinvestigated here adopting the same data collection and least-squares refinement strategy as for CsAlSiO4. The crystal structure of the CsAlSiO4 feldspathoid is built on an ABW framework type, showing a fully ordered Si/Al-distribution in the tetrahedral framework. The only extra-framework site is occupied by Cs, lying off-center in the 8mR-channels. CsAlSiO4 is more likely to retain Cs when immersed in a fluid phase, relative to several other Cs-bearing zeolites. The topological configuration of the Cspolyhedron (and its bonding environment), the small dimension of the pores and the high flexibility of the ABW framework type would imply a better thermal and elastic stability of CsAlSiO4 than those of the zeolitic Cs-aluminosilicates. In this light, CsAlSiO4 can be considered as a functional material potentially usable for fixation and deposition of radioactive isotopes of Cs and can also be considered as a potential solid host for a 137Cs γ-radiation source to be used in sterilization applications.

Received: 2007-7-3
Accepted: 2008-1-15
Published Online: 2015-4-1
Published in Print: 2008-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar
  2. High-temperature ammonium white mica from the Betic Cordillera (Spain)
  3. Synthesis and crystal structure of the feldspathoid CsAlSiO4: An open-framework silicate and potential nuclear waste disposal phase
  4. The crystal chemistry of Li in gadolinite
  5. The effect of the hedenbergitic substitution on the compressibility of jadeite
  6. The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery, South Australia
  7. First-principles calculation of the infrared spectrum of hematite
  8. In situ observations of muscovite dissolution under alkaline conditions at 25–50 °C by AFM with an air/fluid heater system
  9. Ramanite-(Cs) and ramanite-(Rb): New cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy
  10. Pressure-temperature studies of talc plus water using X-ray diffraction
  11. Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine?
  12. Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge
  13. Multiple oxygen sites in synthetic phyllosilicates with expandable layers: 17O solid-state NMR study
  14. On the existence of a Na-deficient monoclinic trinepheline with composition Na7.85Al7.85Si8.15O32
  15. Chlorite and biotite weathering, Fe2+-rich corrensite formation, and Fe behavior under low Po₂ conditions and their implication for Precambrian weathering
  16. Structural characterization of natural UO2 at pressures up to 82 GPa and temperatures up to 2200 K
  17. Dense hydrous magnesium silicates, phase D, and superhydrous B: New structural constraints from one- and two-dimensional 29Si and 1H NMR
  18. Mid-IR bands of synthetic calcic amphiboles of tremolite-pargasite series and of natural calcic amphiboles
  19. Probing the site occupancies of Co-, Ni-, and Mn-substituted biogenic magnetite using XAS and XMCD
  20. Origin of titanite in metarodingite from the Zagros Thrust Zone, Iraq
  21. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer
  22. Single-crystal X-ray diffraction study of CaIrO3
  23. Orthorhombic polymorph of rengeite from Ohmi region, central Japan
  24. New insights into the crystal chemistry of epididymite and eudidymite from Malosa, Malawi: A single-crystal neutron diffraction study
  25. Mechanisms of rhyolitic glass hydration below the glass transition
  26. Heat capacity and entropy of melanophlogite: Molecule-containing porosils in nature
  27. Crystal structure of glaucodot, (Co,Fe)AsS, and its relationships to marcasite and arsenopyrite
  28. Modification of gas speciation in quartz-hosted fluid inclusions by stray laser radiation during LA-ICPMS analysis
  29. A PH₂O-dependent structural phase transition in the zeolite natrolite
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2729/html
Button zum nach oben scrollen