Home Crystal structure of glaucodot, (Co,Fe)AsS, and its relationships to marcasite and arsenopyrite
Article
Licensed
Unlicensed Requires Authentication

Crystal structure of glaucodot, (Co,Fe)AsS, and its relationships to marcasite and arsenopyrite

  • Hexiong Yang EMAIL logo and Robert T. Downs
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

The crystal structure of glaucodot, (Co,Fe)AsS, an important member of the FeAsS-CoAsS-NiAsS system, was determined with single-crystal X-ray diffraction. It is orthorhombic with space group Pn21m and unit-cell parameters a = 14.158(1), b = 5.6462(4), c = 3.3196(2) Å, and V = 265.37(5) Å3. The structure is closely related to that of arsenopyrite or alloclasite, and represents a new derivative of the marcasite-type structure. The As and S atoms in glaucodot, which are ordered into six distinct sites (As1, As2, As3, S1, S2, and S3), form three types of layers [S, As, and mixed (S + As) layers] that are stacked along a in the sequence of (S + As)-(S + As)-S-(S + As)-(S + As)-As-(S + As)-(S + As)... In contrast, arsenopyrite contains the mixed (S + As) layers only and alloclasite consists of isolated S and As layers only. There are no As-As or S-S bonds in glaucodot; all dianion units are formed between S and As, like those in arsenopyrite and alloclasite. The (Co + Fe) cations in glaucodot occupy three nonequivalent octahedral sites (M1, M2, and M3), with M1(As5S), M2(As3S3), and M3(AsS5), which form three distinct edge-shared octahedral chains, A, B, and C, parallel to c, respectively. These chains are arranged along a in the sequence of A-A-B-C-C-B-A-A.... Whereas the configurations of the A and C chains are analogous to those in safflorite and marcasite, respectively, the configuration of the B chain matches that in alloclasite, leading us to propose that the M1, M2, and M3 sites are predominately occupied by Co, (Co + Fe), and Fe, respectively. Our study, together with previous observations, suggests that glaucodot is likely to have an ideal stoichiometry of (Co0.5Fe0.5)AsS, with a limited tolerance for the variation of the Co/Fe ratio.

Received: 2008-2-28
Accepted: 2008-3-25
Published Online: 2015-4-1
Published in Print: 2008-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar
  2. High-temperature ammonium white mica from the Betic Cordillera (Spain)
  3. Synthesis and crystal structure of the feldspathoid CsAlSiO4: An open-framework silicate and potential nuclear waste disposal phase
  4. The crystal chemistry of Li in gadolinite
  5. The effect of the hedenbergitic substitution on the compressibility of jadeite
  6. The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery, South Australia
  7. First-principles calculation of the infrared spectrum of hematite
  8. In situ observations of muscovite dissolution under alkaline conditions at 25–50 °C by AFM with an air/fluid heater system
  9. Ramanite-(Cs) and ramanite-(Rb): New cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy
  10. Pressure-temperature studies of talc plus water using X-ray diffraction
  11. Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine?
  12. Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge
  13. Multiple oxygen sites in synthetic phyllosilicates with expandable layers: 17O solid-state NMR study
  14. On the existence of a Na-deficient monoclinic trinepheline with composition Na7.85Al7.85Si8.15O32
  15. Chlorite and biotite weathering, Fe2+-rich corrensite formation, and Fe behavior under low Po₂ conditions and their implication for Precambrian weathering
  16. Structural characterization of natural UO2 at pressures up to 82 GPa and temperatures up to 2200 K
  17. Dense hydrous magnesium silicates, phase D, and superhydrous B: New structural constraints from one- and two-dimensional 29Si and 1H NMR
  18. Mid-IR bands of synthetic calcic amphiboles of tremolite-pargasite series and of natural calcic amphiboles
  19. Probing the site occupancies of Co-, Ni-, and Mn-substituted biogenic magnetite using XAS and XMCD
  20. Origin of titanite in metarodingite from the Zagros Thrust Zone, Iraq
  21. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer
  22. Single-crystal X-ray diffraction study of CaIrO3
  23. Orthorhombic polymorph of rengeite from Ohmi region, central Japan
  24. New insights into the crystal chemistry of epididymite and eudidymite from Malosa, Malawi: A single-crystal neutron diffraction study
  25. Mechanisms of rhyolitic glass hydration below the glass transition
  26. Heat capacity and entropy of melanophlogite: Molecule-containing porosils in nature
  27. Crystal structure of glaucodot, (Co,Fe)AsS, and its relationships to marcasite and arsenopyrite
  28. Modification of gas speciation in quartz-hosted fluid inclusions by stray laser radiation during LA-ICPMS analysis
  29. A PH₂O-dependent structural phase transition in the zeolite natrolite
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2966/html
Scroll to top button