Startseite Direnzoite, [NaK6MgCa2(Al13Si47O120)·36H2O], a new zeolite from Massif Central (France): Description and crystal structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Direnzoite, [NaK6MgCa2(Al13Si47O120)·36H2O], a new zeolite from Massif Central (France): Description and crystal structure

  • E. Galli und A.F. Gualtieri EMAIL logo
Veröffentlicht/Copyright: 1. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The crystal structure of direnzoite, a new natural zeolite found in the cavities of a xenolitic rock from the Massif Central (France) is reported. Apparently, direnzoite was formed throughout a process of hydrothermal crystallization within the vugs of a highly porphyric basalt. The determination of the crystal structure of this new zeolite was at the limits of the existing experimental techniques because of the paucity of available specimen, mainly composed of three tiny aggregates of fibrous microcrystals. The structure of direnzoite, solved by powder methods, was shown to be the K-dominant equivalent of the synthetic zeolite ECR-1 with a framework composed of layers of mordenite (MOR) and mazzite (MAZ) connected in a regular 1:1 stacking sequence with assigned framework topology EON. The chemical composition of direnzoite determined from the structure refinement is (Na0.94K6.62Mg1.42 Ca2.24)(Si,Al)60O120·36.8H2O. The unit cell determined from the Rietveld structure refinement is a = 7.57887(18) Å, b = 18.20098(57) Å, c = 26.15387(83) Å, and the space group is Pmmn.

Six extra-framework sites and 14 water molecules were identified within the zeolite micropores. Three extra-framework sites are occupied by K+ ions. The others are occupied by Na+, Ca++, and Mg++. Although direnzoite and ECR-1 share the same framework, the distribution of their extra-framework cations is rather different. In direnzoite, there are no equivalent positions to C1, C2, and C4 positions found in ECR-1. Only sites C3 and C3b correspond respectively to K3 and Ca in direnzoite. In direnzoite, K1, K2, and Na correspond to water molecules sites (H2O1, H2O11, and H2O8, respectively) in ECR-1.

Received: 2007-4-11
Accepted: 2007-9-6
Published Online: 2015-4-1
Published in Print: 2008-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Footemineite, the Mn-analog of atencioite, from the Foote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A., and its relationship with other roscherite-group minerals
  2. Element mobility and scale of mass transport in the formation of quartz veins during regional metamorphism of the Waits River Formation, east-central Vermont
  3. Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite
  4. Chemical and physical transfers in an ultramafic rock weathering profile: Part 2. Dissolution vs. accumulation of platinum group minerals
  5. Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures
  6. A low-pressure–high-temperature technique for the piston-cylinder
  7. Pressure-induced structural deformation and elastic behavior of wairakite
  8. Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia
  9. High-temperature deformation of volcanic materials in the presence of water
  10. Menezesite, the first natural heteropolyniobate, from Cajati, São Paulo, Brazil: Description and crystal structure
  11. Single-crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy)
  12. Direnzoite, [NaK6MgCa2(Al13Si47O120)·36H2O], a new zeolite from Massif Central (France): Description and crystal structure
  13. On twinning and microstructures in calcite and dolomite
  14. Density functional calculations of the electronic structure and optical properties of aluminosilicate polymorphs (Al2SiO5)
  15. Crystal-size distribution and composition of garnets in eclogites from the Dabie orogen, central China
  16. Cation order/disorder behavior and crystal chemistry of pyrope-grossular garnets: An 17O 3QMAS and 27Al MAS NMR spectroscopic study
  17. Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature
  18. Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California
  19. The nature of unusual luminescence in natural calcite CaCO3
  20. Carbonate in igneous and metamorphic fluorapatite: Two type A and two type B substitutions
  21. The crystal structure of diopside at pressure to 10 GPa
  22. Electron backscatter diffraction analysis of zircon: A systematic assessment of match unit characteristics and pattern indexing optimization
  23. Compressibility trends of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite
  24. Synthesis and characterization of low-OH– fluor-chlorapatite: A single-crystal XRD and NMR spectroscopic study
  25. Pressure dependence of the hydrogen-bond geometry in topaz-OD from neutron powder diffraction
  26. Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature
  27. The origin of S4+ detected in silicate glasses by XANES
  28. Effects of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77Ti5.90O16
  29. Letter. Toward a thermal model for the Skaergaard liquidus
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2666/html
Button zum nach oben scrollen