Home Electron backscatter diffraction analysis of zircon: A systematic assessment of match unit characteristics and pattern indexing optimization
Article
Licensed
Unlicensed Requires Authentication

Electron backscatter diffraction analysis of zircon: A systematic assessment of match unit characteristics and pattern indexing optimization

  • Steven M. Reddy EMAIL logo , Nicholas E. Timms and Bruce M. Eglington
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

Quantitative microstructural analysis of zircon using electron backscatter diffraction (EBSD) requires a comparison of empirically collected electron backscatter patterns with theoretical patterns or “match units” derived from known crystallographic parameters. There are 23 possible crystallographic data sets for zircon, and associated match units, derived from natural and synthetic zircon and from theoretical calculations over a range of pressures and different rare earth element (REE) compositions. A systematic assessment of these match units has been undertaken by EBSD analysis of each of four zircons from a range of geological environments combined with principal components analysis and self-organizing map networks. Comparison of the different match units shows a systematic relationship across all samples that are related to changes in unit-cell dimensions associated with pressure and compositional variations. Systematic variations in the data generated from 96 EBSD maps, each comprising 10 000 electron backscatter patterns, indicate that match units associated with increasing pressure or REE dopants yield poorer quality EBSD data. The match units from low-pressure, undoped, natural zircon consistently yield the best EBSD results and are recommended for natural zircon EBSD studies irrespective of the zircon source or U content. The results provide a clear strategy for optimizing the acquisition and analysis of EBSD data from zircon from both crustal and mantle sources. In addition, the developed approach to match unit analysis may be applied to all other crystalline materials, potentially optimizing EBSD analyses from a range of materials.

Received: 2007-4-1
Accepted: 2007-9-26
Published Online: 2015-4-1
Published in Print: 2008-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Footemineite, the Mn-analog of atencioite, from the Foote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A., and its relationship with other roscherite-group minerals
  2. Element mobility and scale of mass transport in the formation of quartz veins during regional metamorphism of the Waits River Formation, east-central Vermont
  3. Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite
  4. Chemical and physical transfers in an ultramafic rock weathering profile: Part 2. Dissolution vs. accumulation of platinum group minerals
  5. Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures
  6. A low-pressure–high-temperature technique for the piston-cylinder
  7. Pressure-induced structural deformation and elastic behavior of wairakite
  8. Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia
  9. High-temperature deformation of volcanic materials in the presence of water
  10. Menezesite, the first natural heteropolyniobate, from Cajati, São Paulo, Brazil: Description and crystal structure
  11. Single-crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy)
  12. Direnzoite, [NaK6MgCa2(Al13Si47O120)·36H2O], a new zeolite from Massif Central (France): Description and crystal structure
  13. On twinning and microstructures in calcite and dolomite
  14. Density functional calculations of the electronic structure and optical properties of aluminosilicate polymorphs (Al2SiO5)
  15. Crystal-size distribution and composition of garnets in eclogites from the Dabie orogen, central China
  16. Cation order/disorder behavior and crystal chemistry of pyrope-grossular garnets: An 17O 3QMAS and 27Al MAS NMR spectroscopic study
  17. Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature
  18. Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California
  19. The nature of unusual luminescence in natural calcite CaCO3
  20. Carbonate in igneous and metamorphic fluorapatite: Two type A and two type B substitutions
  21. The crystal structure of diopside at pressure to 10 GPa
  22. Electron backscatter diffraction analysis of zircon: A systematic assessment of match unit characteristics and pattern indexing optimization
  23. Compressibility trends of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite
  24. Synthesis and characterization of low-OH– fluor-chlorapatite: A single-crystal XRD and NMR spectroscopic study
  25. Pressure dependence of the hydrogen-bond geometry in topaz-OD from neutron powder diffraction
  26. Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature
  27. The origin of S4+ detected in silicate glasses by XANES
  28. Effects of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77Ti5.90O16
  29. Letter. Toward a thermal model for the Skaergaard liquidus
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2658/html
Scroll to top button