Home High-temperature deformation of volcanic materials in the presence of water
Article
Licensed
Unlicensed Requires Authentication

High-temperature deformation of volcanic materials in the presence of water

  • G. Robert EMAIL logo , J.K. Russell , D. Giordano and C. Romano
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

We describe an experimental apparatus used to perform deformation experiments relevant to the volcanological sciences. The apparatus supports low-load, high-temperature deformation experiments under dry and wet conditions on natural and synthetic samples. The experiments recover the transient rheology of complex (melt ± porosity ± solids) volcanic materials during uniaxial deformation. The key component to this apparatus is a steel cell designed for high-temperature deformation experiments under controlled water pressure. Experiments are run under constant displacement rates or constant loads; the range of accessible experimental conditions include: 25-1100 °C, load stresses 0 to 150 MPa, strain rates 10-6 to 10-2 1/s, and fluid pressures 0-150 MPa. The apparatus is calibrated against standard values of viscosity using constant-load experiments on cores of NIST (NBS) 717a borosilicate glass. We also report results of constant-displacement rate (~10-6 m/s) experiments on porous (~70%) sintered cores of ash from the Rattlesnake Tuff. The cores of volcanic ash were deformed in experiments under ambient (“dry”) and elevated water pressures (“wet”). Dry experiments at ~870 °C show an increase in effective viscosity (109.5 to 1010.4 Pa·s) with increasing strain (~30%) due to porosity reduction during compaction. Experiments under ~1-3 MPa PH₂O recover lower values of apparent viscosity (109.2 to 109.4 Pa·s) despite being run at lower temperatures (640-665 °C). The wet experiments also do not show a rise in viscosity with increased strain (decreasing porosity) as observed in dry experiments. Rather, the presence of an H2O fluid phase expands the window of viscous deformation and delays the onset of strain hardening that normally accompanies porosity reduction.

Received: 2007-4-10
Accepted: 2007-9-11
Published Online: 2015-4-1
Published in Print: 2008-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Footemineite, the Mn-analog of atencioite, from the Foote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A., and its relationship with other roscherite-group minerals
  2. Element mobility and scale of mass transport in the formation of quartz veins during regional metamorphism of the Waits River Formation, east-central Vermont
  3. Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite
  4. Chemical and physical transfers in an ultramafic rock weathering profile: Part 2. Dissolution vs. accumulation of platinum group minerals
  5. Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures
  6. A low-pressure–high-temperature technique for the piston-cylinder
  7. Pressure-induced structural deformation and elastic behavior of wairakite
  8. Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia
  9. High-temperature deformation of volcanic materials in the presence of water
  10. Menezesite, the first natural heteropolyniobate, from Cajati, São Paulo, Brazil: Description and crystal structure
  11. Single-crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy)
  12. Direnzoite, [NaK6MgCa2(Al13Si47O120)·36H2O], a new zeolite from Massif Central (France): Description and crystal structure
  13. On twinning and microstructures in calcite and dolomite
  14. Density functional calculations of the electronic structure and optical properties of aluminosilicate polymorphs (Al2SiO5)
  15. Crystal-size distribution and composition of garnets in eclogites from the Dabie orogen, central China
  16. Cation order/disorder behavior and crystal chemistry of pyrope-grossular garnets: An 17O 3QMAS and 27Al MAS NMR spectroscopic study
  17. Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature
  18. Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California
  19. The nature of unusual luminescence in natural calcite CaCO3
  20. Carbonate in igneous and metamorphic fluorapatite: Two type A and two type B substitutions
  21. The crystal structure of diopside at pressure to 10 GPa
  22. Electron backscatter diffraction analysis of zircon: A systematic assessment of match unit characteristics and pattern indexing optimization
  23. Compressibility trends of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite
  24. Synthesis and characterization of low-OH– fluor-chlorapatite: A single-crystal XRD and NMR spectroscopic study
  25. Pressure dependence of the hydrogen-bond geometry in topaz-OD from neutron powder diffraction
  26. Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature
  27. The origin of S4+ detected in silicate glasses by XANES
  28. Effects of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77Ti5.90O16
  29. Letter. Toward a thermal model for the Skaergaard liquidus
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2665/html
Scroll to top button