Startseite Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals

  • Cyril Aubaud EMAIL logo , Anthony C. Withers , Marc M. Hirschmann , Yunbin Guan , Laurie A. Leshin , Stephen J. Mackwell und David R. Bell
Veröffentlicht/Copyright: 1. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present new Fourier Transform Infrared Spectroscopy (FTIR) and ion microprobe/secondary ion mass spectrometry (SIMS) analyses of 1H in 61 natural and experimental geological samples. These samples include 8 basaltic glasses (0.17 to 7.65 wt% H2O), 11 rhyolitic glasses (0.143 to 6.20 wt% H2O), 17 olivines (~0 to 910 wt. ppm H2O), 9 orthopyroxenes (~0 to 263 wt. ppm H2O), 8 clinopyroxenes (~0 to 490 wt. ppm H2O), and 8 garnets (~0 to 189 wt. ppm H2O). By careful attention to vacuum quality, the use a Cs+ primary beam, and a resin-free mounting technique, we routinely achieve hydrogen backgrounds equivalent to less than 5 ppm by weight H2O in olivine. Compared to previous efforts, the new calibration extends to a wider range of H2O contents for the minerals and is more reliable owing to a larger number of standards and to characterization of anisotropic minerals by polarized FTIR on oriented crystals. When observed, discrepancies between FTIR and SIMS measurements are attributable to inclusions of hydrous minerals or fluid inclusions in the crystals. Inclusions more commonly interfere with FTIR analyses than with SIMS, owing to the much larger volume sampled by the former. Plots of H2O determined by FTIR vs. (1H/30Si) × (SiO2), determined by SIMS and electron microprobe (EMP) yield linear arrays and for each phase appear to be insensitive to bulk composition. For example, basalt and rhyolite calibration slopes cannot be distinguished. On the other hand, calibration slopes of different phases vary by up to a factor of 4. This reflects either phase-specific behavior of 1H/30Si secondary ion ratios excited by Cs+ ion beams or discrepancies between phase-specific FTIR absorption coefficient schemes.

Received: 2006-2-27
Accepted: 2006-12-14
Published Online: 2015-4-1
Published in Print: 2007-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24)
  2. Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: An optimized materials design with hierarchical architecture
  3. High-temperature phase relations and topological constraints in the quaternary system MgO-Al2O3-SiO2-Cr2O3: An experimental study
  4. Tilt and buckling modes, and acoustic anisotropy in layers with post-perovskite connectivity
  5. Optical absorption study of natural garnets of almandine-skiagite composition showing intervalence Fe2+ + Fe3+ → Fe3+ + Fe2+ charge-transfer transition
  6. Deriving formation constants for aqueous metal complexes from XANES spectra: Zn2+ and Fe2+ chloride complexes in hypersaline solutions
  7. Birnessite polytype systematics and identiÞ cation by powder X-ray diffraction
  8. Improved measurement of fission-track annealing in apatite using c-axis projection
  9. Improved modeling of fission-track annealing in apatite
  10. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals
  11. Order and miscibility in the otavite–magnesite solid solution
  12. An infrared investigation of the otavite-magnesite solid solution
  13. Partitioning of calcium, magnesium, and transition metals between olivine and melt governed by the structure of the silicate melt at ambient pressure
  14. The geometric effects of VFe2+ for VMg substitution on the crystal structures of the grandidierite-ominelite series
  15. The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major-element analysis
  16. Gram-Charlier development of the atomic displacement factors into mineral structures: The case of samsonite, Ag4MnSb2S6
  17. Superstructure of Challis mordenite with doubled monoclinic unit cell
  18. Biopyribole evolution during tremolite synthesis from dolomite and quartz in CO2-H2O fluid
  19. The evolution of diamond morphology in the process of dissolution: Experimental data
  20. The pearceite-polybasite group of minerals: Crystal chemistry and new nomenclature rules
  21. Determination of layer stacking microstructures and intralayer transition of illite polytypes by high-resolution transmission electron microscopy (HRTEM)
  22. Structural behavior of Al3+ in peralkaline, metaluminous, and peraluminous silicate melts and glasses at ambient pressure
  23. The crystal structure of ingersonite, Ca3Mn2+Sb45+O14, and its relationships with pyrochlore
  24. Chemical composition, statistical analysis of the unit cell, and electrostatic modeling of the structure of Al-saturated chlorite from metamorphosed rocks
  25. XANES study of the oxidation state of Cr in lower mantle phases: Periclase and magnesium silicate perovskite
  26. Crystal chemistry of hydration in aluminous orthopyroxene
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2007.2248/html
Button zum nach oben scrollen