Home Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3H2O
Article
Licensed
Unlicensed Requires Authentication

Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3H2O

  • Karrie-Ann Kubatko , Katheryn B. Helean , Alexandra Navrotsky and Peter C. Burns EMAIL logo
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3(H2O), have been determined using high-temperature oxide melt solution calorimetry. The enthalpy of formation of rutherfordine from the binary oxides, ΔHr-ox, is .99.1 ± 4.2 kJ/mol for the reaction UO3 (xl, 298 K) + CO2 (g, 298 K) = UO2CO3 (xl, 298 K). The ΔHr-ox for andersonite is .710.4 ± 9.1 kJ/mol for the reaction Na2O (xl, 298 K) + CaO (xl, 298 K) + UO3 (xl, 298 K) + 3CO2 (g, 298 K) + 5H2O (l, 298 K) = Na2CaUO2(CO3)3(H2O)6 (xl, 298 K). The ΔHr-ox for grimselite is .989.3 ± 14.0 kJ/mol for the reaction 1.5 K2O (xl, 298 K) + 0.5Na2O (xl, 298 K) + UO3 (xl, 298 K) + 3CO2 (g, 298 K) + H2O (l, 298 K) = K3NaUO2(CO3)3H2O (xl, 298 K). The standard enthalpies of formation from the elements, ΔHfºf are .1716.4 ± 4.2, .5593.6 ± 9.1, and .4431.6 ± 15.3 kJ/mol for rutherfordine, andersonite, and grimselite, respectively. Energetic trends of uranyl carbonate formation from the binary oxides and ternary carbonates are dominated by the acid-base character of the binary oxides. However, even relative to mixtures of UO2CO3, K2CO3, and Na2CO3 or CaCO3, andersonite and grimselite are energetically stable by 111.7 ± 10.2 and 139.6 ± 16.1 kJ/mol, respectively, suggesting additional favorable interactions arising from hydration and/or changes in cation environments. These enthalpy values are discussed in comparison with earlier estimates

Received: 2004-9-20
Accepted: 2005-3-20
Published Online: 2015-3-28
Published in Print: 2005-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker
  2. Tourmaline-bearing rocks in the Singhbhum shear zone, eastern India: Evidence of boron infiltration during regional metamorphism
  3. High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4
  4. Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4)
  5. TEM-specimen preparation of cell/mineral interfaces by Focused Ion Beam milling
  6. Direct observation of spinodal decomposition in the magnetite-hercynite system by susceptibility measurements and transmission electron microscopy
  7. Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3H2O
  8. Mixing and ordering behavior in manganocolumbite-ferrocolumbite solid solution: A single-crystal X-ray diffraction study
  9. Structure change of MgSiO3, MgGeO3, and MgTiO3 ilmenites under compression
  10. Dehydration processes in the meta-autunite group minerals meta-autunite, metasaléeite, and metatorbernite
  11. Investigation of the martensitic-like transformation from Mg2GeO4 olivine to its spinel structure polymorph
  12. A high-temperature diffraction study of the solid solution CaTiOSiO4-CaTiOGeO4
  13. The vibrational spectrum of synthetic hydrogrossular (katoite) Ca3Al2(O4H4)3: A low-temperature IR and Raman spectroscopic study
  14. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1
  15. Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties
  16. Synthesis and crystal-chemistry of alkali amphiboles in the system Na2O-MgO-FeO-Fe2O3- SiO2-H2O as a function of fO2
  17. Compositional zoning in sphalerite crystals
  18. Structure and the extent of disorder in quaternary (Ca-Mg and Ca-Na) aluminosilicate glasses and melts
  19. Makarochkinite, Ca2Fe42+Fe3+TiSi4BeAlO20, a new beryllosilicate member of the aenigmatite-sapphirine-surinamite group from the Ilʼmen Mountains (southern Urals), Russia
  20. Formation of lava stalactites in the master tube of the 1792-1793 flow field, Mt. Etna (Italy)
  21. Crystal-size distributions of garnets in metapelites from the northeastern Bushveld contact aureole, South Africa
  22. Early diagenetic origin of Al phosphate-sulfate minerals (woodhouseite and crandallite series) in terrestrial sandstones, Nova Scotia, Canada
  23. Scandium silicates from the Baveno and Cuasso al Monte NYF-granites, Southern Alps (Italy): Mineralogy and genetic inferences
  24. Letter. The effect of Fictive temperature on Al coordination in high-pressure (10 GPa) sodium aluminosilicate glasses
  25. Letter. α-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China
  26. Letter. Morphological characteristics of ordered kaolinite: Investigation using electron back-scattered diffraction
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2005.1821/html
Scroll to top button