Startseite Spectroscopic study on the local structure of sulfate ( S O 4 2 − ) incorporated in scorodite (FeAsO4·2H2O) lattice: Implications for understanding the Fe(III)-As(V)- S O 4 2 − -bearing minerals formation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spectroscopic study on the local structure of sulfate ( S O 4 2 ) incorporated in scorodite (FeAsO4·2H2O) lattice: Implications for understanding the Fe(III)-As(V)- S O 4 2 -bearing minerals formation

  • Xu Ma ORCID logo , Fengdai Qi , Mario Alberto Gomez , Rui Su , Zelong Yan , Shuhua Yao , Shaofeng Wang und Yongfeng Jia
Veröffentlicht/Copyright: 29. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The incorporation of sulfate ( S O 4 2 ) into the scorodite (FeAsO4·2H2O) lattice is an important mechanism during arsenic (As) fixation in natural and engineered settings. However, spectroscopic evidence of S O 4 2 speciation and local structure in scorodite lattice is still lacking. In this study, X‑ray difraction (XRD), Fourier transform infrared spectroscopy (FTIR), sulfur K-edge X‑ray absorption near edge structure (XANES), and extended X‑ray absorption fine structure (EXAFS) spectroscopic analyses in combination with density functional theory (DFT) calculations were used to determine the local coordination environment of S O 4 2 in the naturally and hydrothermally synthesized scorodite. The S O 4 2 retention in natural scorodite and the effect of pH value and initial Na+ concentration on the incorporation of S O 4 2 in synthetic scorodite were investigated. The results showed that trace amounts of S O 4 2 were incorporated in natural scorodite samples. Scanning electron microscopy (SEM) results revealed that S O 4 2 was homogeneously distributed inside the natural and synthetic scorodite particles, and its content in the synthetic scorodite increased slightly with the initial Na+ concentration at pH of 1.2 and 1.8. The FTIR features and XANES results indicated that the coordination number (CN) of FeO6 octahedra around S O 4 2 in scorodite lattice is four. The DFT calculation optimized interatomic distances of S-O were 1.45, 1.46, 1.48, and 1.48 Å with an average of ~1.47 Å, and the interatomic distances of S-Fe were 3.29, 3.29, 3.33, and 3.41 Å with an average of ~3.33 Å. EXAFS analysis gave an average S-O bond length of 1.47(1) and S-Fe bond length of 3.33(1) Å with a CNS-Fe = 4 for S O 4 2 in the scorodite structure, in good agreement with the DFT optimized structure. The results conclusively showed that S O 4 2 in the scorodite lattice may be in the form of a Fe2(SO4)3-like local structure. The present study is significant for understanding the formation mechanism of scorodite in natural environments and hydrometallurgical unit operations for waste sulfuric acid treatment.

References cited

Anisimov, V.I., Zaanen, J., and Andersen, O.K. (1991) Band theory and Mott insulators: Hubbard-U instead of Stoner I. Physical Review B, 44, 943–954.10.1103/PhysRevB.44.943Suche in Google Scholar

Basciano, L.C., and Peterson, R.C. (2007) Jarosite-hydronium jarosite solid-solution series with full iron site occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92, 1464–1473.10.2138/am.2007.2432Suche in Google Scholar

Bolanz, R.M., Gottlicher, J., Steininger, R., and Wieczorek, A. (2016) Structural incorporation of As5+ into rhomboclase ((H5O2)Fe3+(SO4)2·2H2O) and (H3O)Fe(SO4)2. Chemosphere, 146, 338–345.10.1016/j.chemosphere.2015.11.048Suche in Google Scholar PubMed

Casiot, C., Leblanc, M., Bruneel, O., Personné, J.-C., Koffi, K., and Elbaz-Poulichet, F. (2003) Geochemical processes controlling the formation of As-rich waters within a tailings impoundment (Carnoulès, France). Aquatic Geochemistry, 9, 273–290.10.1023/B:AQUA.0000028985.07557.39Suche in Google Scholar

Chai, L.Y., Yang, J.Q., Zhang, N., Wu, P.J., Li, Q.Z., Wang, Q.W., Liu, H., and Yi, H.B. (2017) Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes using UV-Vis, XAS and DFT-TDDFT. Chemosphere, 182, 595–604.10.1016/j.chemosphere.2017.05.018Suche in Google Scholar PubMed

Christidis, P.C., and Rentzeperis, P.J. (1976) The crystal structure of rhombohedral Fe2(SO4)3. Zeitschrift für Kristallographie, 144, 341–352.10.1524/zkri.1976.144.1-6.341Suche in Google Scholar

Debekaussen, R., Droppert, D., and Demopoulos, G.P. (2001) Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite. CIM Bulletin, 94, 116–122.Suche in Google Scholar

Drahota, P., and Filippi, M. (2009) Secondary arsenic minerals in the environment: A review. Environment International, 35, 1243–1255.10.1016/j.envint.2009.07.004Suche in Google Scholar PubMed

Fanfani, L., Nunzi, A., and Zanazzi, P.F. (1970) The crystal structure of roemerite. American Mineralogist, 55, 78–89.Suche in Google Scholar

Fang, J.H., and Robinson, P.D. (1970) Crystal structures and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite. American Mineralogist, 55, 1534–1540.Suche in Google Scholar

Fernández-Martínez, A., Cuello, G.J., Johnson, M.R., Bardelli, F., Román-Ross, G., Charlet, L., and Turrillas, X. (2008) Arsenate incorporation in gypsum probed by neutron, X-ray scattering and density functional theory modeling. The Journal of Physical Chemistry. A, 112, 5159–5166.10.1021/jp076067rSuche in Google Scholar PubMed

Flemming, R.L., Salzsauler, K.A., Sherriff, B.L., and Sidenko, N.V. (2005) Identification of scorodite in fine-grained, high-sulfide, arsenopyrite mine-waste using micro X-ray diffraction (μXRD). Canadian Mineralogist, 43, 1243–1254.10.2113/gscanmin.43.4.1243Suche in Google Scholar

Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T. (2008a) Effects of zinc, copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process. Hydrometallurgy, 93, 30–38.10.1016/j.hydromet.2008.02.016Suche in Google Scholar

Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T. (2008b) Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I. Hydrometallurgy, 90, 92–102.10.1016/j.hydromet.2007.09.012Suche in Google Scholar

Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T. (2008c) Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part II. Effect of temperature and air. Hydrometallurgy, 90, 85–91.10.1016/j.hydromet.2007.09.012Suche in Google Scholar

Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T. (2009a) Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite. Hydrometallurgy, 96, 189–198.10.1016/j.hydromet.2008.10.003Suche in Google Scholar

Fujita, T., Taguchi, R., Shibata, E., and Nakamura, T. (2009b) Preparation of an As(V) solution for scorodite synthesis and a proposal for an integrated As fixation process in a Zn refinery. Hydrometallurgy, 96, 300–312.10.1016/j.hydromet.2008.11.008Suche in Google Scholar

Giacomazzi, L., and Scandolo, S. (2010) Gypsum under pressure: A first-principles study. Physical Review B, 81.10.1103/PhysRevB.81.064103Suche in Google Scholar

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., and others. (2009) Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics. Condensed Matter : An Institute of Physics Journal, 21, 395502.10.1088/0953-8984/21/39/395502Suche in Google Scholar

Giere, R., Sidenko, N.V., and Lazareva, E.V. (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.10.1016/S0883-2927(03)00055-6Suche in Google Scholar

Gomez, M.A., Assaaoudi, H., Becze, L., Cutler, J.N., and Demopoulos, G.P. (2010) Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4·2H2O), ferric arsenate sub-hydrate (FAsH; FeAsO4·0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe(AsO4)1–x(SO4)x(OH)x·wH2O). Journal of Raman Spectroscopy, 41, 212–221.10.1002/jrs.2419Suche in Google Scholar

Gomez, M.A., Becze, L., Celikin, M., and Demopoulos, G.P. (2011) The effect of copper on the precipitation of scorodite (FeAsO4·2H2O) under hydrothermal conditions: Evidence for a hydrated copper containing ferric arsenate sulfate-short lived intermediate. Journal of Colloid and Interface Science, 360, 508–518.10.1016/j.jcis.2011.05.010Suche in Google Scholar PubMed

Gomez, M.A., Ventruti, G., Celikin, M., Assaaoudi, H., Putz, H., Becze, L., Lee, K.E., and Demopoulos, G.P. (2013) The nature of synthetic basic ferric arsenate sulfate (Fe(AsO4)(1-x)(SO4)(x)(OH)(x)) and basic ferric sulfate (FeOHSO4): their crystallographic, molecular and electronic structure with applications in the environment and energy. RSC Advances, 3, 16840–16849.10.1039/c3ra42235fSuche in Google Scholar

Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799.10.1002/jcc.20495Suche in Google Scholar PubMed

Hawthorne, F.C., and Ferguson, R.B. (1975) Refinement of crystal-structure of Krohnkite. Acta Crystallographica, B31, 1753–1755.10.1107/S0567740875006048Suche in Google Scholar

Hug, S.J. (1997) In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions. Journal of Colloid and Interface Science, 188, 415–422.10.1006/jcis.1996.4755Suche in Google Scholar

Kato, T., and Miúra, Y. (1975) The crystal structure of jarosite and svanbergite. Mineralogical Journal, 8, 419–430.10.2465/minerj.8.419Suche in Google Scholar

Kinniburgh, D.G., and Cooper, D.M. (2011) PhreePlot: creating graphical output with PHREEQC. www.phreeplot.orgSuche in Google Scholar

Kitahama, K., Kiriyama, R., and Baba, Y. (1975) Refinement of crystal-structure of scorodite. Acta Crystallographica, B31, 322–324.10.1107/S056774087500266XSuche in Google Scholar

Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 1–18.10.2138/am.2007.2170Suche in Google Scholar

Langmuir, D., Mahoney, J., and Rowson, J. (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70, 2942–2956.10.1016/j.gca.2006.03.006Suche in Google Scholar

Le Berre, J.F., Gauvin, R., and Demopoulos, G.P. (2008) A study of the crystallization kinetics of scorodite via the transformation of poorly crystalline ferric arsenate in weakly acidic solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315, 117–129.10.1016/j.colsurfa.2007.07.028Suche in Google Scholar

López-Archilla, A.I., Marin, I., and Amils, R. (2001) Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microbial Ecology, 41, 20–35.10.1007/s002480000044Suche in Google Scholar PubMed

Ma, X., Yuan, Z.D., Gomez, M.A., Wang, X., Wang, S.F., Yao, S.H., and Jia, Y.F. (2017) A qualitative and quantitative investigation of partitioning and local structure of arsenate in barite lattice during coprecipitation of barium, sulfate, and arsenate. American Mineralogist, 102, 2512–2520.10.2138/am-2017-6148Suche in Google Scholar

Ma, X., Gomez, M.A., Yuan, Z.D., Zhang, G.Q., Wang, S.F., Li, S.F., Yao, S.H., Wang, X., and Jia, Y.F. (2019) A novel method for preparing an As(V) solution for scorodite synthesis from an arsenic sulphide residue in a Pb refinery. Hydrometallurgy, 183, 1–8.10.1016/j.hydromet.2018.11.003Suche in Google Scholar

Maillot, F., Morin, G., Juillot, F., Bruneel, O., Casiot, C., Ona-Nguema, G., Wang, Y., Lebrun, S., Aubry, E., Vlaic, G., and Brown, G.E. (2013) Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation. Geochimica et Cosmochimica Acta, 104, 310–329.10.1016/j.gca.2012.11.016Suche in Google Scholar

Majzlan, J., and Myneni, S.C.B. (2005) Speciation of iron and sulfate in acid waters: Aqueous clusters to mineral precipitates. Environmental Science & Technology, 39, 188–194.10.1021/es049664pSuche in Google Scholar

Min, X.B., Liao, Y.P., Chai, L.Y., Yang, Z.H., Xiong, S., Liu, L., and Li, Q.Z. (2015) Removal and stabilization of arsenic from anode slime by forming crystal scorodite. Transactions of Nonferrous Metals Society of China, 25, 1298–1306.10.1016/S1003-6326(15)63728-1Suche in Google Scholar

Morin, G., Juillot, F., Casiot, C., Bruneel, O., Personne, J.C., Elbaz-Poulichet, F., Leblanc, M., Ildefonse, P., and Calas, G. (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the carnoulbs acid mine drainage, France. A XANES, XRD, and SEM study. Environmental Science & Technology, 37, 1705–1712.10.1021/es025688pSuche in Google Scholar

Murciego, A., Álvarez-Ayuso, E., Pellitero, E., Rodríguez, MA., García-Sánchez, A., Tamayo, A., Rubio, J., Rubio, F., and Rubin, J. (2011) Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. Journal of Hazardous Materials, 186, 590–601.10.1016/j.jhazmat.2010.11.033Suche in Google Scholar

Myneni, S.C.B. (2000) X-ray and vibrational spectroscopy of sulfate in Earth materials. Reviews in Mineralogy and Geochemistry, 40, 113–172.10.1515/9781501508660-004Suche in Google Scholar

Myneni, S.C.B., Traina, S.J., Waychunas, G.A., and Logan, T.J. (1998) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62, 3499–3514.10.1016/S0016-7037(98)00221-XSuche in Google Scholar

Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., and Blowes, D.W. (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science & Technology, 34, 254–258.10.1021/es990646vSuche in Google Scholar

Okude, N., Nagoshi, M., Noro, H., Baba, Y., Yamamoto, H., and Sasaki, T.A. (1999) P and S K-edge XANES of transition-metal phosphates and sulfates. Journal of Electron Spectroscopy and Related Phenomena, 101-103, 607–610.10.1016/S0368-2048(98)00341-7Suche in Google Scholar

Omori, K. (1968) Infrared diffraction and the far infrared spectra of anhydrous sulfates. Mineralogical Journal, 5, 334–354.10.2465/minerj1953.5.334Suche in Google Scholar

Paktunc, D., and Bruggeman, K. (2010) Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes. Applied Geochemistry, 25, 674–683.10.1016/j.apgeochem.2010.01.021Suche in Google Scholar

Paktunc, D., and Dutrizac, J.E. (2003) Characterization of arsenate-for-sulfate substitution in synthetic jarosite using X-ray diffraction and X-ray absorption spectroscopy. Canadian Mineralogist, 41, 905–919.10.2113/gscanmin.41.4.905Suche in Google Scholar

Peak, D., Ford, R.G., and Sparks, D.L. (1999) An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. Journal of Colloid and Interface Science, 218, 289–299.10.1006/jcis.1999.6405Suche in Google Scholar

Powers, D.A., Rossman, G.R., Schugar, H.J., and Gray, H.B. (1975) Magnetic behavior and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs. Journal of Solid State Chemistry, 13, 1–13.10.1016/0022-4596(75)90075-4Suche in Google Scholar

Qi, X.J., Li, Y.K., Wei, L.H., Hao, F.Y., Zhu, X., Wei, Y.G., Li, K.Z., and Wang, H. (2019) Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. RSC Advances, 10, 29–42.10.1039/C9RA06568GSuche in Google Scholar

Singhania, S., Wang, Q.K., Filippou, D., and Demopoulos, G.P. (2006) Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions. Metallurgical and Materials Transactions B, 37, 189–197.10.1007/BF02693148Suche in Google Scholar

Sörbo, B. (1987) Sulfate: Turbidimetric and nephelometric methods. Methods in Enzymology, 143, 3–6.10.1016/0076-6879(87)43003-6Suche in Google Scholar

Ventruti, G., Scordari, F., Schingaro, E., Gualtieri, A.F., and Meneghini, C. (2005) The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe23+(H2O)4[O(SO4)2]. American Mineralogist, 90, 679–686.10.2138/am.2005.1739Suche in Google Scholar

Ventruti, G., Della Ventura, G., Gomez, M.A., Capitani, G., Sbroscia, M., and Sodo, A. (2020) High-temperature study of basic ferric sulfate, FeOHSO4. Physics and Chemistry of Minerals, 47.10.1007/s00269-020-01113-7Suche in Google Scholar

Wang, S.F., Ma, X., Zhang, G.Q., Jia, Y.F., and Hatada, K. (2016) New insight into the local structure of hydrous ferric arsenate using full-potential multiple scattering analysis, density functional theory calculations, and vibrational spectroscopy. Environmental Science & Technology, 50, 12114–12121.10.1021/acs.est.6b02703Suche in Google Scholar PubMed

Yang, J.Q., Chai, L.Y., Yue, M.Q., and Li, Q.Z. (2015) Complexation of arsenate with ferric ion in aqueous solutions. RSC Advances, 5, 103936–103942.10.1039/C5RA21836ESuche in Google Scholar

Zhu, X., Kirk Nordstrom, D., Blaine McCleskey, R., Wang, R., Lu, X., Li, S., and Teng, H.H. (2019) On the thermodynamics and kinetics of scorodite dissolution. Geochimica et Cosmochimica Acta, 265, 468–477.10.1016/j.gca.2019.09.012Suche in Google Scholar

Received: 2021-06-17
Accepted: 2021-09-22
Published Online: 2022-09-29
Published in Print: 2022-10-26

© 2022 Mineralogical Society of America

Artikel in diesem Heft

  1. Experimentally derived F, Cl, and Br fluid/melt partitioning of intermediate to silicic melts in shallow magmatic systems
  2. Spectroscopic study on the local structure of sulfate ( S O 4 2 ) incorporated in scorodite (FeAsO4·2H2O) lattice: Implications for understanding the Fe(III)-As(V)- S O 4 2 -bearing minerals formation
  3. Oxidation of arcs and mantle wedges by reduction of manganese in pelagic sediments during seafloor subduction
  4. Raman scattering and Cr3+ luminescence study on the structural behavior of δ-AlOOH at high pressures
  5. Jadeite and related species in shocked meteorites: Limitations on inference of shock conditions
  6. Pressure-induced C23–C37 transition and compression behavior of orthorhombic Fe2S to Earth’s core pressures and high temperatures
  7. Estimating ferric iron content in clinopyroxene using machine learning models
  8. Pyradoketosite, a new, unexpected, polymorph of Ag3SbS3 from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy)
  9. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China
  10. Synthesis of ferrian and ferro-saponites: Implications for the structure of (Fe,Mg)-smectites formed under reduced conditions
  11. Natural cubic perovskite, Ca(Ti,Si,Cr)O3–δ, a versatile potential host for rock-forming and less-common elements up to Earth’s mantle pressure
  12. Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P
  13. Zinconigerite-2N1S ZnSn2Al12O22(OH)2 and zinconigerite-6N6S Zn3Sn2Al16O30(OH)2, two new minerals of the nolanite-spinel polysomatic series from the Xianghualing skarn, Hunan Province, China
  14. Tracing structural relicts of the ikaite-to-calcite transformation in cryogenic cave glendonite
  15. Oxygen-fugacity evolution of magmatic Ni-Cu sulfide deposits in East Kunlun: Insights from Cr-spinel composition
  16. New Mineral Names
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2022-8184/html?lang=de
Button zum nach oben scrollen