Home Natural cubic perovskite, Ca(Ti,Si,Cr)O3–δ, a versatile potential host for rock-forming and less-common elements up to Earth’s mantle pressure
Article
Licensed
Unlicensed Requires Authentication

Natural cubic perovskite, Ca(Ti,Si,Cr)O3–δ, a versatile potential host for rock-forming and less-common elements up to Earth’s mantle pressure

  • Sergey N. Britvin , Natalia S. Vlasenko , Andrey Aslandukov , Alena Aslandukovа , Leonid Dubrovinsky , Liudmila A. Gorelova , Maria G. Krzhizhanovskaya , Oleg S. Vereshchagin ORCID logo , Vladimir N. Bocharov , Yulia S. Shelukhina , Maksim S. Lozhkin , Anatoly N. Zaitsev and Fabrizio Nestola ORCID logo
Published/Copyright: September 29, 2022
Become an author with De Gruyter Brill

Abstract

Perovskite, CaTiO3, originally described as a cubic mineral, is known to have a distorted (orthorhombic) crystal structure. We herein report on the discovery of natural cubic perovskite. This was identified in gehlenite-bearing rocks occurring in a pyrometamorphic complex of the Hatrurim Formation (the Mottled Zone), in the vicinity of the Dead Sea, Negev Desert, Israel. The mineral is associated with native α-(Fe,Ni) metal, schreibersite (Fe3P), and Si-rich fluorapatite. The crystals of this perovskite reach 50 μm in size and contain many micrometer-sized inclusions of melilitic glass. The mineral contains significant amounts of Si substituting for Ti (up to 9.6 wt% SiO2), corresponding to 21 mol% of the davemaoite component (cubic perovskite-type CaSiO3), in addition to up to 6.6 wt% Cr2O3. Incorporation of trivalent elements results in the occurrence of oxygen vacancies in the crystal structure; this is the first example of natural oxygen-vacant ABO3 perovskite with the chemical formula Ca(Ti,Si,Cr)O3–δ (δ ~0.1). Stabilization of cubic symmetry (space group Pmm) is achieved via the mechanism not reported so far for CaTiO3, namely displacement of an O atom from its ideal structural position (site splitting). The mineral is stable at atmospheric pressure to 1250 ± 50 °C; above this temperature, its crystals fuse with the embedded melilitic glass, yielding a mixture of titanite and anorthite upon melt solidification. The mineral is stable upon compression to at least 50 GPa. The a lattice parameter exhibits continuous contraction from 3.808(1) Å at atmospheric pressure to 3.551(6) Å at 50 GPa. The second-order truncation of the Birch-Murnaghan equation of state gives the initial volume V0 equal to 55.5(2) Å3 and room temperature isothermal bulk modulus K0 of 153(11) GPa. The discovery of oxygen-deficient single perovskite suggests previously unaccounted ways for incorporation of almost any element into the perovskite framework up to pressures corresponding to those of the Earth’s mantle.

Funding statement: This research was financially supported by the Russian Science Foundation, grant 18-17-00079. High-pressure studies were performed at the PETRA III storage ring at DESY, a member of the Helmholtz Association (HGF). The authors acknowledge the Resource Center of X‑ray diffraction studies, “Geomodel” Resource Centre, Centre for Microscopy and Microanalysis, Nanophotonics Resource Center and Interdisciplinary Resourse center of Nanotechnology of Saint-Petersburg State University for the access to instrumental and computational resources.

Acknowledgments

The authors are indebted to Mikhail Murashko and Yevgeny Vapnik for the loan of the specimens of cubic perovskite. We are thankful to Associate Editor G.D. Gatta for editorial handling of the manuscript and to the Crystal Structures Editor for corrections of crystallographic data. The constructive suggestions and invaluable linguistic support of the referees, Roger Mitchell and an anonymous reviewer, are gratefully acknowledged.

References cited

Ali, R., and Yashima, M. (2005) Space group and crystal structure of the perovskite CaTiO3 from 296 to 1720 K. Journal of Solid State Chemistry, 178, 2867–2872.10.1016/j.jssc.2005.06.027Search in Google Scholar

Anzolini, C., Siva-Jothy, W.K., Locock, A.J., Nestola, F., Balić-Žunić, T., Alvaro, M., Chinn, I.L., Stachel, T., and Pearson, D.G. (2022) Heamanite-(Ce), (K0.5Ce0.5)TiO3, a new perovskite supergroup mineral found in diamond from Gahcho Kué, Canada. American Mineralogist.10.2138/am-2022-8098Search in Google Scholar

Barth, T. (1925) Die Kristallstruktur von Perowskit und Verwandten Verbindungen. Norsk Geologisk Tidsskrift, 8, 201–216 (in German).Search in Google Scholar

Becerro, A.I., McCammon, C., Langenhorst, F., Seifert, F., and Angel, R. (1999) Oxygen vacancy ordering in CaTiO3-CaFeO2.5 perovskites: From isolated defects to infinite sheets. Phase Transitions, 69, 133–146.10.1080/01411599908208014Search in Google Scholar

Britvin, S.N., Kashtanov, S.A., Krzhizhanovskaya, M.G., Gurinov, A.A., Glumov, O.V., Strekopytov, S., Kretser, Y.L., Zaitsev, A.N., Chukanov, N.V., and Krivovichev, S.V. (2015) Perovskites with the Framework-Forming Xenon. Angewandte Chemie, 54, 14340–14344.10.1002/anie.201506690Search in Google Scholar PubMed

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., and Krzhizhanovskaya, M.G. (2020) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. American Mineralogist, 105, 422–427.10.2138/am-2020-7192Search in Google Scholar

Britvin, S.N., Krzhizhanovskaya, M.G., Zolotarev, A.A., Gorelova, L.A., Obolonskaya, E.V., Vlasenko, N.S., Shilovskikh, V.V., and Murashko, M.N. (2021a) Crystal chemistry of schreibersite, (Fe,Ni)3P. American Mineralogist, 106, 1520–1529.10.2138/am-2021-7766Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Vlasenko, N.S., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Bocharov, V.N., and Lozhkin, M.S. (2021b) Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology, 49, 382–386.10.1130/G48203.1Search in Google Scholar

Britvin, S.N., Vereshchagin, O.S., Shilovskikh, V.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vlasenko, N.S., Pakhomova, A.S., Zaitsev, A.N., Zolotarev, A.A., Bykov, M., Lozhkin, M.S., and Nestola, F. (2021c) Discovery of terrestrial allabogdanite (Fe,Ni)2P, and the effect of Ni and Mo substitution on the barringerite-allabogdanite high-pressure transition. American Mineralogist, 106, 944–952.10.2138/am-2021-7621Search in Google Scholar

Dachraoui, W., Hadermann, J., Abakumov, A.M., Tsirlin, A.A., Batuk, D., Glazyrin, K., McCammon, C., Dubrovinsky, L., and Van Tendeloo, G. (2012) Local oxygen-vacancy ordering and twinned octahedral tilting pattern in the Bi0.81Pb0.19FeO2.905 cubic perovskite. Chemistry of Materials, 24, 1378–1385.10.1021/cm300178xSearch in Google Scholar

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

Fleurance, S., Cuney, M., Malartre, M., and Reyx, J. (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201–219.10.1016/j.palaeo.2012.10.020Search in Google Scholar

French, B.M., and Koeberl, C. (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth-Science Reviews, 98, 123–170.10.1016/j.earscirev.2009.10.009Search in Google Scholar

Garfunkel, Z., and Ben-Avraham, Z. (1996) The structure of the Dead Sea basin. Tectonophysics, 266, 155–176.10.1016/S0040-1951(96)00188-6Search in Google Scholar

Goldschmidt, V.M. (1926) Geochemische Verteilungsgesetze Der Elemente VII. Die Gesetze der Krystallochemie nach Untersuchungen gemeinsam mit T. Barth, G. Lunde, W. Zacharisasen. Skrifter Utgitt av Det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse, 1–117 (in German).Search in Google Scholar

Gonzalez-Platas, J., Alvaro, M., Nestola, F., and Angel, R.J. (2016) EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. Journal of Applied Crystallography, 49, 1377–1382.10.1107/S1600576716008050Search in Google Scholar

Gross, S. (1977) The mineralogy of the Hatrurim Formation. Israel. Geological Survey of Israel Bulletin, 70, 1–80.Search in Google Scholar

Guennou, M., Bouvier, P., Krikler, B., Kreisel, J., Haumont, R., and Garbarino, G. (2010) High-pressure investigation of CaTiO3 up to 60 GPa using X-ray diffraction and Raman spectroscopy. Physical Review B, 82, 134101.10.1103/PhysRevB.82.134101Search in Google Scholar

Husson, E., Abello, L., and Morell, A. (1990) Short-range order in PbMg1/3Nb2/3O3 ceramics by Raman spectroscopy. Materials Research Bulletin, 25, 539–545.10.1016/0025-5408(90)90191-4Search in Google Scholar

Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Varela, M.-E., and Iizuka, Y. (2019) New minerals tsangpoite Ca5(PO4)2(SiO4) and matyhite Ca9(Ca0.50.5)Fe(PO4)7 from angrite D’Orbigny. Mineralogical Magazine, 83, 293–313.10.1180/mgm.2018.125Search in Google Scholar

Jirak, Z., Pollert, E., Andersen, A.F., Grenier, J.-C., and Hagenmuller, P. (1990) Structure and conductivity in Pr1–xBaxMnO3 perovskites (O < x < 0.40). European Journal of Solid State and Inorganic Chemistry, 27, 421–433.Search in Google Scholar

Jongejan, A., and Wilkins, A.L. (1970) A re-examination of the system CaO-TiO2 at liquidus temperatures. Journal of the Less Common Metals, 20, 273–279.10.1016/0022-5088(70)90001-9Search in Google Scholar

Kopylova, M.G., Rickard, R.S., Kleyenstueber, A., Taylor, W.R., Gurney, J.J., and Daniels, L.R.M. (1997) First occurrence of strontian K-Cr loparite and Cr-chevkinite in diamonds. Russian Geology and Geophysics, 38, 405–420.Search in Google Scholar

Krivovichev, S.V., Chakhmouradian, A.R., Mitchell, R.H., Filatov, S.K., and Chukanov, N.V. (2000) Crystal structure of isolueshite and its synthetic compositional analogue. European Journal of Mineralogy, 12, 597–607.10.1127/ejm/12/3/0597Search in Google Scholar

Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y., and Galuskin, E. (2022) Bennesherite, Ba2Fe22+Si2O7—A new melilite group mineral from the Hatrurim Basin. American Mineralogist, 107, 138–146.10.2138/am-2021-7747Search in Google Scholar

Kubo, A., Suzuki, T., and Akaogi, M. (1997) High-pressure phase equilibria in the system CaTiO3-CaSiO3: Stability of perovskite solid solutions. Physics and Chemistry of Minerals, 24, 488–494.10.1007/s002690050063Search in Google Scholar

Lafuente, B., Downs, R.T., Yang, H., and Stone, N. (2015) The power of databases: The RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 1–30. De Gruyter.10.1515/9783110417104-003Search in Google Scholar

Leinenweber, K., Grzechnik, A., Voorhees, M., Navrotsky, A., Yao, A., and McMillan, P.F. (1997) Structural variation in Ca(TixSi1–x)O3 perovskites (1 > x > 0.65) and the ordered phase Ca2TiSiO6. Physics and Chemistry of Minerals, 24, 528–534.10.1007/s002690050068Search in Google Scholar

Li, G., Uesu, Y., and Kohn, K. (2002) Structural Characterization of the Complex Perovskites Ba1–xLaxTi1–xCrxO3. Journal of Solid State Chemistry, 164, 98–105.10.1006/jssc.2001.9452Search in Google Scholar

Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and van de Streek, J. (2006) Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453–457.10.1107/S002188980600731XSearch in Google Scholar

Matmon, A. (2017) Landscape evolution along the Dead Sea Fault and its margins. In Ye. Enzel and O. Bar-Yosef, Ed., Quaternary of the Levant, p. 391–400. Cambridge University Press.10.1017/9781316106754.046Search in Google Scholar

McCammon, C.A., Becerro, A.I., Langenhorst, F., Angel, R.J., Marion, S., and Seifert, F. (2000) Short-range ordering of oxygen vacancies in CaFexTi1−xO3−x/2 perovskites (0 < x < 0.4). Journal of Physics: Condensed Matter, 12, 2969–2984.Search in Google Scholar

McMillan, P., and Ross, N. (1988) The Raman spectra of several orthorhombic calcium oxide perovskites. Physics and Chemistry of Minerals, 16, 21–28.10.1007/BF00201326Search in Google Scholar

Meyer, N.A., Wenz, M.D., Walsh, J.P.S., Jacobsen, S.D., Locock, A.J., and Harris, J.W. (2019) Goldschmidtite, (K,REE,Sr)(Nb,Cr)O3: A new perovskite supergroup mineral found in diamond from Koffiefontein, South Africa. American Mineralogist, 104, 1345–1350.10.2138/am-2019-6937Search in Google Scholar

Mitchell, R.H. (2002) Perovskites Modern and Ancient: Thunder Bay, Ontario. Almaz Press.Search in Google Scholar

Mitchell, R.H., and Chakhmouradian, A.R. (1999) Sr-bearing perovskite and loparite from lamproite and agpaitic nepheline syenite pegmatites. Canadian Mineralogist, 37, 99–112.Search in Google Scholar

Mitchell, R.H., Welch, M.D., and Chakhmouradian, A.R. (2017) Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineralogical Magazine, 81, 411–461.10.1180/minmag.2016.080.156Search in Google Scholar

Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D.G., Pamato, M.G., Alvaro, M., Peruzzo, L., Gurney, J.J., Moore, A.E., and Davidson, J. (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature, 555, 237–242.10.1038/nature25972Search in Google Scholar PubMed

Nilsen, W.G., and Skinner, J.G. (1968) Raman Spectrum of Strontium Titanate. The Journal of Chemical Physics, 48, 2240–2248.10.1063/1.1669418Search in Google Scholar

Novikov, I., Vapnik, Y., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone. Geoscience Frontiers, 4, 597–619.10.1016/j.gsf.2013.02.005Search in Google Scholar

Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223–230.10.1080/08957959.2015.1059835Search in Google Scholar

Prince, A.T. (1951) Phase equilibrium relationships in a portion of the system MgO-Al2O3-2CaO-SiO2. Journal of the American Ceramic Society, 34, 44–51.10.1111/j.1151-2916.1951.tb13028.xSearch in Google Scholar

Redfern, S.A.T. (1996) High-temperature structural phase transitions in perovskite (CaTiO3). Journal of Physics: Condensed Matter, 8, 8267–8275.Search in Google Scholar

Richet, P., and Gillet, P. (1997) Pressure-induced amorphization of minerals: A review. European Journal of Mineralogy, 9, 907–933.10.1127/ejm/9/5/0907Search in Google Scholar

Rigaku Oxford Diffraction. (2018) CrysAlisPro Software System Version 171.40.67a. Rigaku Corporation, Oxford, UK.Search in Google Scholar

Rose, G. (1839) Beschreihung einiger neuen Mineralien des Urals. 3. Der Perowskit, eine neue Mineralgattung. Annalen Der Physik und Chemie, 124, 551–573. (in German).10.1002/andp.18391241205Search in Google Scholar

Ross, N.L., and Angel, R.J. (1999) Compression of CaTiO3 and CaGeO3 perovskites. American Mineralogist, 84, 277–281.10.2138/am-1999-0309Search in Google Scholar

Ryb, U., Erel, Y., Matthews, A., Avni, Y., Gordon, G.W., and Anbar, A.D. (2009) Large molybdenum isotope variations trace subsurface fluid migration along the Dead Sea transform. Geology, 37, 463–466.10.1130/G25331A.1Search in Google Scholar

Schäfer, H., Müller, W.F., and Hornemann, U. (1984) Shock effects in melilite. Physics and Chemistry of Minerals, 10, 121–124.10.1007/BF00309646Search in Google Scholar

Sharma, S.K., Yoder, H.S., and Matson, D.W. (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52, 1961–1967.10.1016/0016-7037(88)90177-9Search in Google Scholar

Sharygin, V.V., Sokol, E.V., and Vapnik, Y. (2008) Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, 709–726.10.1016/j.rgg.2008.03.001Search in Google Scholar

Sharygin, V.V., Yakovlev, G.A., Wirth, R., Seryotkin, Y.V., Sokol, E.V., Nigmatulina, E.N., Karmanov, N.S., and Pautov, L.A. (2019) Nataliakulikite, Ca4Ti2(Fe3+,Fe2+) (Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel. Minerals, 9, 700.10.3390/min9110700Search in Google Scholar

Sheldrick, G.M. (2015) A short history of SHELX. Acta Crystallographica, A71, 3–8.Search in Google Scholar

Siny, G., Katiyar, R.S., and Bhalla, A.S. (1998) Cation arrangement in the complex perovskites and vibrational spectra. Journal of Raman Spectroscopy, 29, 385–390.10.1002/(SICI)1097-4555(199805)29:5<385::AID-JRS250>3.0.CO;2-FSearch in Google Scholar

Smolensky, G.A., Siny, I.G., Pisarev, R.V., and Kuzminov, E.G. (1976) Raman scattering in ordered and disordered perovskite type crystals. Ferroelectrics, 12, 135–136.10.1080/00150197608241407Search in Google Scholar

Sokol, E.V., Kokh, S.N., Sharygin, V.V., Danilovsky, V.A., Seryotkin, Y.V., Liferovich, R., Deviatiiarova, A.S., Nigmatulina, E.N., and Karmanov, N.S. (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in oil shale clinkering. Minerals, 9, 465.10.3390/min9080465Search in Google Scholar

Speck, A.K., Whittington, A.G., and Hofmeister, A.M. (2011) Disordered silicates in space: a study of laboratory spectra of “amorphous” silicates. The Astrophysical Journal, 740, 93.10.1088/0004-637X/740/2/93Search in Google Scholar

Stolper, E. (1982) Crystallization sequences of Ca-Al-rich inclusions from Allende: An experimental study. Geochimica et Cosmochimica Acta, 46, 2159–2180.10.1016/0016-7037(82)90192-2Search in Google Scholar

Tschauner, O., Huang, S., Yang, S., and Humayun, M. (2020) Davemaoite, IMA 2020-012a. CNMNC Newsletter No. 58. Mineralogical Magazine, 84. https://doi.org/10.1180/mgm.2020.93.10.1180/mgm.2020.93Search in Google Scholar

Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B., and Rossman, G.R. (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1100–1102.10.1126/science.1259369Search in Google Scholar

Vapnik, Y., Sharygin, V.V., Sokol, E.V., and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. The Geological Society of America, Reviews in Engineering Geology, 18, 133–153.Search in Google Scholar

Walter, M.J., Bulanova, G.P., Armstrong, L.S., Keshav, S., Blundy, J.D., Gudfinnsson, G., Lord, O.T., Lennie, A.R., Clark, S.M., Smith, C.B., and Gobbo, L. (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454, 622–625.10.1038/nature07132Search in Google Scholar

Zaitsev, A.N., Zhitova, E.S., Spratt, J., Zolotarev, A.A., and Krivovichev, S.V. (2017) Isolueshite, NaNbO3, from the Kovdor carbonatite, Kola peninsula, Russia: Composition, crystal structure and possible formation scenarios. Neues Jahrbuch für Mineralogie Abhandlungen, 194, 165–173.10.1127/njma/2017/0052Search in Google Scholar

Received: 2021-06-19
Accepted: 2021-09-29
Published Online: 2022-09-29
Published in Print: 2022-10-26

© 2022 Mineralogical Society of America

Articles in the same Issue

  1. Experimentally derived F, Cl, and Br fluid/melt partitioning of intermediate to silicic melts in shallow magmatic systems
  2. Spectroscopic study on the local structure of sulfate ( S O 4 2 ) incorporated in scorodite (FeAsO4·2H2O) lattice: Implications for understanding the Fe(III)-As(V)- S O 4 2 -bearing minerals formation
  3. Oxidation of arcs and mantle wedges by reduction of manganese in pelagic sediments during seafloor subduction
  4. Raman scattering and Cr3+ luminescence study on the structural behavior of δ-AlOOH at high pressures
  5. Jadeite and related species in shocked meteorites: Limitations on inference of shock conditions
  6. Pressure-induced C23–C37 transition and compression behavior of orthorhombic Fe2S to Earth’s core pressures and high temperatures
  7. Estimating ferric iron content in clinopyroxene using machine learning models
  8. Pyradoketosite, a new, unexpected, polymorph of Ag3SbS3 from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy)
  9. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China
  10. Synthesis of ferrian and ferro-saponites: Implications for the structure of (Fe,Mg)-smectites formed under reduced conditions
  11. Natural cubic perovskite, Ca(Ti,Si,Cr)O3–δ, a versatile potential host for rock-forming and less-common elements up to Earth’s mantle pressure
  12. Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P
  13. Zinconigerite-2N1S ZnSn2Al12O22(OH)2 and zinconigerite-6N6S Zn3Sn2Al16O30(OH)2, two new minerals of the nolanite-spinel polysomatic series from the Xianghualing skarn, Hunan Province, China
  14. Tracing structural relicts of the ikaite-to-calcite transformation in cryogenic cave glendonite
  15. Oxygen-fugacity evolution of magmatic Ni-Cu sulfide deposits in East Kunlun: Insights from Cr-spinel composition
  16. New Mineral Names
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2022-8186/html
Scroll to top button