Startseite Deciphering the enigmatic origin of Guyana’s diamonds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Deciphering the enigmatic origin of Guyana’s diamonds

  • Roy Bassoo ORCID logo EMAIL logo , Kenneth S. Befus , Peng Liang , Steven L. Forman und Glenn Sharman
Veröffentlicht/Copyright: 31. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Diamonds have long been mined from alluvial terrace deposits within the rainforest of Guyana, South America. No primary kimberlite deposits have been discovered in Guyana, nor have there been previous studies on the mineralogy and origin of the diamonds. Paleoproterozoic terranes in Guyana are prospective to diamond occurrences because the most productive deposits are associated spatially with the eastern escarpment of the Paleoproterozoic Roraima Supergroup. Geographic proximity suggests that the diamonds are detrital grains eroding from the <1.98 Ga conglomerates, metamorphosed to zeolite and greenschist facies. The provenance and paragenesis of the alluvial diamonds are described using a suite of placer diamonds from different locations across the Guiana Shield. Guyanese diamonds are typically small, and those in our collection range from 0.3 to 2.7 mm in diameter; octahedral and dodecahedral, with lesser cubic and minor macle forms. The diamonds are further subdivided into those with abraded and non-abraded surfaces. Abraded diamonds show various colors in cathodoluminescence, whereas most non-abraded diamonds appear blue. In all populations, diamonds are predominantly colorless, with lesser brown to yellow and very rare white. Diamonds are predominantly Type IaAB and preserve moderate nitrogen aggregation and total nitrogen concentrations ranging from trace to ~1971 ppm. The kinetics of nitrogen aggregation indicate mantle-derived residence temperatures of 1124 ± 100 °C, assuming residence times of 1.3 and 2.6 Ga for abraded and non-abraded diamonds, respectively. The diamonds are largely sourced from the peridotitic to eclogitic lithospheric upper mantle based on both δ13C values of –5.82 ± 2.45‰ (VPDB-LSVEC) and inclusion suites predominantly comprised of forsterite, enstatite, Cr-pyrope, chromite, rutile, clinopyroxene, coesite, and almandine garnet. Detrital, accessory minerals are non-kimberlitic. Detrital zircon geochronology indicates diamondiferous deposits are predominantly sourced from Paleoproterozoic rocks of 2079 ± 88 Ma.

Acknowledgments

We thank M. Harden of Alicanto Minerals and G. Nestor of the Guyana Geology and Mines Commission for their logistical support. A. Jagnandan of the Guyana Gold and Diamond Miners Association. R. Melville and N. Blackman provided invaluable on field support, for which we are grateful. We also thank J. Krakowsky (General Manager for Kays Diamond Enterprise Ltd.), for technical advice and diamond samples, which were crucial to this study. A special thanks is given to M. Kopylova of the University of British Columbia for her technical input. We thank B. Schaulis at the University of Arkansas for assistance with LA-ICP-MS data collection.

References cited

Andrews-Jones, D.A. (1968) Petrogenesis and geochemistry of the rocks of the Kenema district, Sierra Leone. Ph.D. thesis, abstract, Leeds University, England.Suche in Google Scholar

Araújo, D.P., Santos, R.V., Souza, V., Chemale, F., and Dantas, E. (2011) Diamantes Serra do Tepequém: resultados preliminares. 12th Simpósio da Amazônia, 2 a 5 de outubro de 2011-Boa Vista-Roraima. Documento da Conferência.Suche in Google Scholar

Bardet, M.G., and Vachette, M. (1966) Determination d’ages de kimberlites de l’ouest African et assai d’interpretation de dataions des diverses venus dia-mantiferes dans le monde. Bureau de Recherches Géologiques et Miniéres Report D866A59.Suche in Google Scholar

Basei, M.A.S., and Teixeira, W. (1975) Geocronologia do Território de Roraima, in Anais, Conferência Geológica Intergüianas, 10th, Belém, Brazil: Belém, Brazil. Departamento Nacional de Pesquisa Mineral, 453–473.Suche in Google Scholar

Bassoo, R., and Murphy, B. (2018) The 9 Mile deposit of the Barama-Mazaruni Greenstone belt of the Guiana Shield: Geochemistry, geochronology and regional significance. Brazilian Journal of Geology, 48, 671–683.10.1590/2317-4889201820180072Suche in Google Scholar

Bergman, S.C. (1987) Lamproites and other potassium-rich igneous rocks, a review of their occurrence, mineralogy and geochemistry. Geological Society of London, Special Publications, 30, 103–190.10.1144/GSL.SP.1987.030.01.08Suche in Google Scholar

Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., and Foudoulis, C. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115–140.10.1016/j.chemgeo.2004.01.003Suche in Google Scholar

Bosma, W., Kroonenberg, S.B., van Lissa, R.V., Maas, K., and de Roever, E.W.F. (1983) Igneous and metamorphic complexes of the Guiana Shield in Suriname. Geologie en Mijnbouw, 62, 241–254.Suche in Google Scholar

Breeding, C.M., Eaton-Magaña, S., and Shigley, J.E. (2018) Natural-color green diamonds: A beautiful conundrum. Gems and Gemology, 54, 2–27.10.5741/GEMS.54.1.2Suche in Google Scholar

Briceno, H.O. (1984) Genesis of Venezuelan mineral deposits II. Acta Scientifica Venezolana 36.Suche in Google Scholar

Bruce, L.F., Kopylova, M.G., Longo, M., Ryder, J., and Dobrzhinetskaya, L.F. (2011) Luminescence of diamonds from metamorphic rocks. American Mineralogist, 96, 14–22.10.2138/am.2011.3467Suche in Google Scholar

Bulanova, G.P. (1995) The formation of diamond. Journal of Geochemical Exploration, 53, 1–23.10.1016/0375-6742(94)00016-5Suche in Google Scholar

Cabral, N.I., Nannini, F., Silveira, F.V., Cunha, L.M., Bezerra, A.K., and Souza, W.S. (2017) Mapa das áreas kimberlíticas e diamantíferas dos estados de Roraima, Pará, Piauí, Rio Grande do Norte, Santa Catarina e Rio Grande do Sul. Programa Geologia do Brasil (PGB), Ação Avaliação dos Recursos Minerais do Brasil. Natal, CPRM 2017, 1 mapa colorido, 215 × 90 cm. Escala 1:5 000 000.Suche in Google Scholar

Capdevila, R., Arndt, N., Letendre, J., and Sauvage, J.F. (1999) Diamonds in volcaniclastic komatiite from French Guiana. Nature, 399, 456–458.10.1038/20911Suche in Google Scholar

Cartigny, P. (2005) Stables isotopes and the origin of diamond. Elements, 1, 79–84.10.2113/gselements.1.2.79Suche in Google Scholar

Cartigny, P., De Corte, K., Vladislav, S., Ader, M., De Parpe, P., Sobolev, N.K., and Javoy, M. (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chemical Geology, 176, 265–281.10.1016/S0009-2541(00)00407-1Suche in Google Scholar

Cartigny, P., Palot, M., Thomassot, E., and Harris, J.W. (2014) Diamond formation: A stable isotope perspective. Annual review of Earth and Planetary Sciences, 42, 699–732.10.1146/annurev-earth-042711-105259Suche in Google Scholar

Channer, D.M.D., Egorov, A., and Kaminsky, F. (2001) Geology and structure of the Guaniamo diamondiferous kimberlite sheets, south-west Venezuela. Revista Brasileira de Geociências, 31, 615–630.10.25249/0375-7536.2001314615630Suche in Google Scholar

Chrenko, R.M., Tuft, R.E., and Strong, H.M. (1977) Transformation of the state of nitrogen in diamond. Nature, 20, 141–144.10.1038/270141a0Suche in Google Scholar

Clark, C.D., Collins, A.T., and Woods, G.S. (1992) Absorption and luminescence spectroscopy. In J.E. Field, Ed., The Properties of Natural and Synthetic Diamond, 35–69. Academic.Suche in Google Scholar

Collins, A., and Kiflawi, I. (2009) The annealing of radiation damage in Type Ia diamond. Journal of Physics: Condensed Matter, 21, 364209.10.1088/0953-8984/21/36/364209Suche in Google Scholar

Collins, A., and Ly, C-H. (2002) Misidentification of nitrogen-vacancy absorption in diamond. Journal of Physics: Condensed Matter, 14, L467–L471.10.1088/0953-8984/14/25/105Suche in Google Scholar

Collins, A., Connor, A., Ly, C-H., and Shareef, A. (2005) High-temperature annealing of optical centers in type-I diamond. Journal of Applied Physics, 97, 083517.10.1063/1.1866501Suche in Google Scholar

Cordani, U.G., and de Brito Neves, B.B. (1982) The geologic evolution of South America during the Archaean and early Proterozoic. Revista Brasileira de Geociências, 12, 78–88.Suche in Google Scholar

Cordani, U.G., and Teixeira, W. (2007) Proterozoic accretionary belts in the Amazonian Craton. Geological Society of America Memoirs, 200, 297–320.10.1130/2007.1200(14)Suche in Google Scholar

Da Silva Rodrigues, A.F. (1991) Depositos diamantiferos de Roraima. In C. Schobbenhaus, E.T. Queiroz, and C.E.S. Coelho, Eds., Principais depositos minerais do Brasil. Rochas e minerais industriais. Gemas e rochas ornamentais: Brasilia, Departmento Nacional de Producao Mineral (DNPM)/Companhia de Pesquisa de Recursos Minerais (CPRM), 177–198.Suche in Google Scholar

De Waele, B., Lacorde, M., Vergara, and Chan, G. (2015) New insights on proterozoic tectonics and sedimentation along the peri-Gondwanan West African margin based on zircon U-Pb SHRIMP geochronology. Precambrian Research, 259, 156–175.10.1016/j.precamres.2014.08.008Suche in Google Scholar

Daoust, C., Voicu, G., Brisson, H., and Gauthier, M. (2011) Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname. Journal of South American Earth Sciences, 32, 222–245.10.1016/j.jsames.2011.07.001Suche in Google Scholar

Deines, P., and Harris, J.W. (2004) New insights into the occurrence of 13C-depleted carbon in the mantle from two closely associated kimberlites: Letlhakane and Orapa, Botswana. Lithos, 77, 125–142.10.1016/j.lithos.2004.04.015Suche in Google Scholar

Deines, P., and Harris, J.W. (1995) Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochimica Cosmochimica Atca, 59, 3173–3188.10.1016/0016-7037(95)00205-ESuche in Google Scholar

Delor, C., Lahondère, D., Egal, E., Lafon, J.M., Cocherie, A., Guerrot, C., Rossi, P., Truffert, C., Théveniaut, H., Phillips, D., and de Avelar, V.G. (2003) Trans-Amazonian crustal growth and reworking as revealed by the 1:500 000 scale geological map of French Guyana (2nd ed.). Geology of France and surrounding areas. Special Guyana Shield, BRGM–SGF, 2-3-4, 5–57.Suche in Google Scholar

Evans, T., and Qi, Z. (1982) The kinetics of the aggregation of nitrogen atoms in diamond. Proceedings of the Royal Society A, 381, 169–178.Suche in Google Scholar

Fedortchouk. Y (2015) Diamond resorption features as a new method for examining conditions of kimberlite emplacement. Contributions to Mineralogy and Petrology, 170, 36.10.1007/s00410-015-1190-zSuche in Google Scholar

Fedortchouk, Y., Canil, D., and Semenets, E. (2007) Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. American Mineralogist, 92, 1200–1212.10.2138/am.2007.2416Suche in Google Scholar

Fedortchouk, Y., Matveev, S., and Carlson, J.A. (2010) H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada. Earth and Planetary Science Letters, 289, 549–559.10.1016/j.epsl.2009.11.049Suche in Google Scholar

Fraga, L.M.B., Macambira, M.J.B., Dall’Agnol R., and Costa, J.B.S. (2009) 1.94–1.93 Ga charnockitic magmatism from the central part of the Guyana Shield, Roraima, Brazil: single-zircon evaporation data and tectonic implications. Journal of South American Earth Sciences, 27, 247–257.10.1016/j.jsames.2009.02.007Suche in Google Scholar

Galbraith, R., and Green, P. (1990) Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation, Part D, Nuclear Tracks and Radiation Measurements, 17, 197–206.10.1016/1359-0189(90)90035-VSuche in Google Scholar

Gibbs, A.K., and Barron, C.N. (1993) The Geology of the Guiana Shield. Oxford University Press, 246 p.Suche in Google Scholar

Grantham, D.R., and Allen, J.B. (1960) Kimberlite in Sierra Leone. Overseas Geology and Mineral Resources, 8(1), 5–25.Suche in Google Scholar

Hall, P.K. (1972) The diamond fields of Sierra Leone. Geological Survey of Sierra Leone Bulliten, 5(1), 133.Suche in Google Scholar

Harrison, E.R., and Tolansky, S. (1964) Growth history of a natural octahedral diamond. Proceedings of the Royal Society of London, Series A, 279, 490–496.Suche in Google Scholar

Heesterman, L., Kemp A.W., Arjune B.K., and Cole, E. (2005) Pashanamu project geology, structure and geochemistry. Guyana Geology and Mines Commission.Suche in Google Scholar

Howell, D., O’Neill, C.J., Grant, K.J., Griffin, W.L., Pearson, N. J., and O’Reilly, S.Y. (2012) μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diamond and Related Materials, 29, 29–36.10.1016/j.diamond.2012.06.003Suche in Google Scholar

Iakoubovskii, K., and Adriaenssens, G.J. (1999) Photoluminescence in CVD diamond films. Physica Status Solidi Applied Research, 172, 123–129.10.1002/(SICI)1521-396X(199903)172:1<123::AID-PSSA123>3.0.CO;2-ESuche in Google Scholar

Janse, A.J.A. (1996) A history of diamond sources in Africa: Part II. Gems and Gemology.10.5741/GEMS.32.1.2Suche in Google Scholar

Kaminsky, F.V., and Khachatryan, G. (2012) Nitrogen in diamond. KM Diamond Exploration, Ltd. West Vancouver, Canada. Indian Institute of Technology, Mumbai.Suche in Google Scholar

Kaminsky, F.V., Zakharchenko, O.D., Griffin, W.L., Channer, D.M. DeR., and Khacchatryan-Blinova, G.K. (2000) Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38, 1347–1370.10.2113/gscanmin.38.6.1347Suche in Google Scholar

Kaminsky, F.V., Sablukov, S.M., Sablukova, L.I. and Channer, D.M.D. (2004) Neoproterozoic “anomalous” kimberlites of Guaniamo, Venezuela: Mica kimberlites of “isotopic transitional” type. Lithos, 76, 565–590.10.1016/j.lithos.2004.03.035Suche in Google Scholar

Kaminsky, F.V., Zakharchenko O.D., Khachatryan G.K., Griffin W.L., and Channer, D.M.D. (2006) Diamond from the Los Coquitos area, Bolivar State Venezuela. Canadian Mineralogist, 44, 323–340.10.2113/gscanmin.44.2.323Suche in Google Scholar

Knopf, D. (1970) Les kimberlites et les roches apparentés de Côte d’Ivoire (Kimberlite and related rocks of Ivory Coast). Sodemi, Abidjan, pp 202.Suche in Google Scholar

Kopylova, M., Afanasiev, V.P., Bruce, L.F., Thurston, P.C., and Ryder, J. (2011) Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth and Planetary Science Letters, 312, 231–225.10.1016/j.epsl.2011.09.057Suche in Google Scholar

Kroonenberg, S.B., and Gersie, K. (2019) Quaternary climate change and its importance for gold exploration in the Guiana Shield. Conference paper. 11th Inter Guiana Geological Conference, Paramaribo, Suriname, 19–20 February, 2019.Suche in Google Scholar

Kroonenberg, S.B., De Roever, E.W.F., Fraga, L.M., Reis, N.J., Faraco, M.T., Cordani, U.G., Lafon, J.M., and Wong, Th.E. (2016) Paleoproterozoic evolution of the Guiana Shield in Suriname—A revised model. Netherlands Journal of Geosciences, 95, 491–522.10.1017/njg.2016.10Suche in Google Scholar

Lafuente, B., Downs, R. T., Yang, H., and Stone, N. (2016) The power of databases: The RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 1–29. W. de Gruyter GmbH.10.1515/9783110417104-003Suche in Google Scholar

Liang, P., and Forman, S. (2019) LDAC: Luminescence dose and age calculator (v 1.0) (computer software). Luminescence dating research lab. Baylor University. https://www.baylor.edu/geosciences/index.php?id=962356Suche in Google Scholar

Lindblom, J., Holsa, J., Papunen, H., and Hakkanen, H. (2005) Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. American Mineralogist, 90, 428–440.10.2138/am.2005.1681Suche in Google Scholar

Magee, C.W., and Taylor, W.R. (1999) Diamond and chromite geochemical constraints on the nature of the Dachine complex, French Guiana, Annual Report. Australian National University, Canberra, Australia, 85 p.Suche in Google Scholar

Mather, K.A., Pearson, D.G., McKenzie, D., Kjarsgaard, B.A., and Priestly, K. (2011) Constraints on the depth and thermal history of the cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos, 125, 729–742.10.1016/j.lithos.2011.04.003Suche in Google Scholar

McConnell, R.B. (1968) Planation surfaces in Guyana. The Geographical Journal, 134, 506–520.10.2307/1796379Suche in Google Scholar

McLachlan, G.J., Lee, S.X., and Rathnayake, S.I. (2019). Finite mixture models. Annual Review of Statistics and its Application, 6(1), 355–378.10.1002/0471721182Suche in Google Scholar

Meyer, H.O.A., and McCallum, M.E. (1993) Diamonds and their sources in the Venezuelan portion of the Guyana Shield. Economic Geology, 88, 989–998.10.2113/gsecongeo.88.5.989Suche in Google Scholar

Mitchell, R.H., and Bergman, S.C. (1991) Petrology of Lamproites. Plenum Press.10.1007/978-1-4615-3788-5Suche in Google Scholar

Nadeau, S., and Heesterman, L. (2010) Guyana Geology and Mines Commission, Geological Map of Guyana—scale 1:1 million. Guyana Geology and Mines Commission, Georgetown, Guyana.Suche in Google Scholar

Naipal, R., Kroonenberg, S., and Mason, P. (2019) Ultramafic rocks of the Paleoproterozoic greenstone belt in the Guiana Shield of Suriname, and their mineral potential. SAXI- XI Inter Guiana Geological Conference 2019: Paramaribo, Suriname.Suche in Google Scholar

Norcross, C.E. (1997) U-Pb geochronology of the Omai intrusion-hosted Au-quartz vein deposit and host rocks, Guiana Shield, South America. Master of Science thesis, Department of Geology, University of Toronto.Suche in Google Scholar

Norman, D.I., Ward, J., and McKittrick, S. (1996) Hosts and sources of Ghana diamonds. SME/AIME Annual Meeting, Phoenix, Arizona, U. S.A.Suche in Google Scholar

Oganov, A., Hemley, R.J., Hazen, R.M., and Jones, A.P. (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77.10.1515/9781501508318-005Suche in Google Scholar

Olszewski, W.J. Jr., Gaudette, H., and Mendonza, V. (1977) Rb-Sr geochronology of the basement rocks, Amazonas Territory, Venezuela: A progress report. Proceedings, V Congreso Geologico Venezolano, 2, 519–525.Suche in Google Scholar

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011) Iolite: Free-ware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508.10.1039/c1ja10172bSuche in Google Scholar

Persaud, K. (2010) The diamond industry and exploration for diamonds in Guyana, Guyana. Geology and Miners Commission.Suche in Google Scholar

Pollack, H.N., and Chapman, D.S. (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 179–196.10.1016/0040-1951(77)90215-3Suche in Google Scholar

Priem H.N.A., Boelrijk N.A.I.M, Hebed E.H., Verdurmen E.A., and Verschure R.H. (1973) Age of the Precambrian Roraima Formation in northeastern South America: Evidence from isotopic dating of Roraima pyroclastic volcanic rocks in Suriname. GSA Bulletin, 84(5), 1677–1684.10.1130/0016-7606(1973)84<1677:AOTPRF>2.0.CO;2Suche in Google Scholar

Ramlal, S. (2018) An investigation of the Brincks intrusion and its relationship to the surrounding gold deposits, Brokopondo, Suriname, South America. M.S. thesis. Anton de Kom University of Suriname, 146–147.Suche in Google Scholar

Reid, A.R. (1974) Proposed origin for Guianian diamonds. Geology, 2, 67–68.10.1130/0091-7613(1974)2<67:POFGD>2.0.CO;2Suche in Google Scholar

Reis, N.J., de Faria, M.S.G., Fraga, L.M., and Haddad, R.C. (2000) Orosirian calc-alkaline volcanism and the Orocaima event in the northern Amazonian Craton, eastern Roraima State. Revista Brasileira de Geociências, 30, 380–383.10.25249/0375-7536.2000303380383Suche in Google Scholar

Reis, N.J., Nadeau, S., Fraga, L.M., Betiollo, L.M., Faraco, M.T.L., Reece, J. Lachhman, D., and Ault, R. (2017) Stratigraphy of the Roraima Supergroup along the Brazil-Guyana border in the Guiana Shield, Northern Amazonian Craton—Results of the Brazil-Guyana Geology and Geodiversity mapping project. Brazillian Journal of Geology, 47, 43–57.10.1590/2317-4889201720160139Suche in Google Scholar

Santos, J.O.S., Potter, P.E., Reis, N.J., Hartman, L.A., Fletcher, I.R., and McNaughton, N.J. (2003) Age, source and regional stratigraphy of the Roraima Supergroup and Roraima-like outliers in northern South America based on U-Pb geochronology. Geological Society of America Bulletin, 115, 331–348.10.1130/0016-7606(2003)115<0331:ASARSO>2.0.CO;2Suche in Google Scholar

Schobbenhaus, C., Hoppe, A., Lork, A., and Baumann, A. (1994) Idade U/Pb do magmatismo Uatumã no norte do cráton Amazônico, Escudo das Guianas (Brasil): Primeiros resultados. In Anais, Congresso Brasileiro de Geologia, 37th, Camboriú, Brazil: Porto Alegre, Brazil, Sociedade Brasileira de Geologia, 2, 395–397.Suche in Google Scholar

Schönberger, J.M.H. (1975) Diamond exploration between the Suriname and Saramacca Rivers (NE Suriname). Mededeling Geologisch Mijnbouwkundige Dienst, 23, 228–238.Suche in Google Scholar

Schönberger, H., and de Roever, E.W.F. (1974) Possible origin of diamonds in the Guiana Shield: Comment. Geology, 2, 475–475.10.1130/0091-7613(1974)2<474:POODIT>2.0.CO;2Suche in Google Scholar

Schulze, D.J. (2003) A classification scheme for mantle-derived garnets in kimberlite: A tool for investigating the mantle and exploring for diamonds. Lithos, 71, 195–213.10.1016/S0024-4937(03)00113-0Suche in Google Scholar

Schulze, D.J., Canil, D.M., Channer, D.M.D., and Kaminsky, F.V. (2006) Layered mantle structure beneath the western Guyana Shield, Venezuela: Evidence from diamonds and xenocrysts in Guaniamo kimberlites. Geochimica et cosmochimica Acta, 70, 192–205.10.1016/j.gca.2005.08.025Suche in Google Scholar

Schwartz, G. (1978) Estimating the dimensions of a model. Annals of Statistics, 6, 461–464.10.1214/aos/1176344136Suche in Google Scholar

Seal, M. (1965) Structure in diamonds as revealed by etching. American Mineralogist, 50, 105–123.Suche in Google Scholar

Sharman, G.R., Sharman, J.P., and Sylvester, Z. (2018) DetritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data. The Depositional Record, 4(2), 202–215.10.1002/dep2.45Suche in Google Scholar

Shields, H.N., and Letendre, J. (1999) Final exploration report on Amatuk Prospecting License for the period January 2, 1996 to February 9, 1998. Golden Star Resources Ltd.Suche in Google Scholar

Shigley, J.E., and Breeding, M. (2013) Optical defects in diamond: A quick reference chart. Gems and Gemology, 49.10.5741/GEMS.49.2.107Suche in Google Scholar

Skinner, E.M.W., Apter, D.B., Morelli, C., and Smithson, N.K. (2004) Kimberlites of the Man Craton, West Africa. Lithos, 76, 233–259.10.1016/j.lithos.2004.04.034Suche in Google Scholar

Slama, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A.E., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N.S., and others. (2008) Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1–35.10.1016/j.chemgeo.2007.11.005Suche in Google Scholar

Smart, K., Chacko, T., Stachel, T., Muehlenbachs, K., Stern, R., and Heaman, L. (2011) Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochimica et Cosmochimica Acta, 75, 6027–6047.10.1016/j.gca.2011.07.028Suche in Google Scholar

Smith, B.M., Walter, J.W., Galina, P.B., Mikhail, S., Burnham, A.D., Gobbo, L., and Kohn, S.C. (2016) Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos, 265, 82–95.10.1016/j.lithos.2016.09.026Suche in Google Scholar

Sparks, R. S.J. (2013) Kimberlite volcanism. Annual Review of Earth and Planetary Sciences, 41, 497–582.10.1146/annurev-earth-042711-105252Suche in Google Scholar

Stachel, T., and Harris, J.W. (2009) Formation of diamond in the Earth’s mantle. Journal of Physics: Condensed Matter, 21, 364206 (10pp).10.1088/0953-8984/21/36/364206Suche in Google Scholar PubMed

Stachel, T., Harris, J.W., Aulbach, S., and Deines, P. (2002) Kankan diamonds (Guinea) III: δ13C and N characteristics of deep diamonds. Contributions to Mineralogy and Petrology, 142, 465–475.10.1007/s004100100297Suche in Google Scholar

Sunagawa, I. (1984) Morphology of natural and synthetic diamond crystals. In I. Sunagawa, Ed., Materials Science of the Earth’s Interior. Terra Scientific, Tokyo, 303–330.Suche in Google Scholar

Sutherland, D.G. (1982) The transport and sorting of diamonds by fluvial and marine processes. Economic Geology, 77, 1613–1620.10.2113/gsecongeo.77.7.1613Suche in Google Scholar

Svisero, D.P., Shigley, J.E., and Weldon, R. (2017) Brazilian diamonds: A historical and recent perspective. Gems and Gemology, 53(1).10.5741/GEMS.53.1.2Suche in Google Scholar

Tappert, R., and Tappert, M. (2011) Diamonds in Nature: A Guide to Rough Diamonds. Springer.10.1007/978-3-642-12572-0Suche in Google Scholar

Tappert, R., Stachel, T., Harris, J.W., Muehlenbachs, K., and Brey, G.P. (2006) Placer diamonds from Brazil: Indicators of the composition of the Earth’s mantle and the distance to their kimberlitic sources. Economic Geology, 101, 453–470.10.2113/gsecongeo.101.2.453Suche in Google Scholar

Tassinari, C.C.G. (1997) The Amazonian Craton. In M.J. De Wit and M.J. Ashwal, Eds., Greenstone Belts. Clarendon Press, 558–566.Suche in Google Scholar

Taylor, W.R., Jaques, A.L., and Ridd, M. (1990) Nitrogen-defect aggregation characteristics of some Australasian diamonds: Time-temperature constrains on the source regions of pipe and alluvial diamonds. American Mineralogist, 75, 1290–1310.Suche in Google Scholar

Taylor, W.R., Canil, D., and Milledge, H.J. (1996) Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochimica et Cosmochimica Acta, 60, 4725–4733.10.1016/S0016-7037(96)00302-XSuche in Google Scholar

van Kooten, C. (1954) Eerste onderzoek op diamant: Rosebel-Sabanpassie. Mededeling Geologisch Mijnbouwkundige Dienst, Suriname 11, 63–64 pp.Suche in Google Scholar

Vance, E.R., Harris, J.W., and Milledge, H.J. (1973) Possible origins of α damage in diamonds from kimberlite and alluvial sources. Mineralogical Magazine, 39, 349–360.10.1180/minmag.1973.039.303.12Suche in Google Scholar

Vanderhaeghe, O., Ledru, P., Thiéblemont, D., Egal, E., Cocherie, A., Tegyey, M., and Milési, J.P. (1998) Contrasting mechanism of crustal growth Geodynamic evolution of the Paleoproterozoic granite greenstone belts of French Guiana. Precambrian Research, 92, 165–193.10.1016/S0301-9268(98)00074-6Suche in Google Scholar

Westerman, A.R. (1969) The structural analysis of Matthews Ridge manganese mine, North West District, Guyana—with an appendix on supergene enrichment. Paper presented at the 8th Guiana Geological Conference, August 1969.Suche in Google Scholar

Wilks, E.M., and Wilks, J. (1972) The resistance of diamond to abrasion. Journal of Physics D: Applied Physics, 5, 1902–1919.10.1088/0022-3727/5/10/323Suche in Google Scholar

Woods, G.S., Van Wyk, J.A., and Collins, A.T. (1990) The nitrogen content of type Ib synthetic diamond. Philosophical Magazine B, 62, 589–595.10.1080/13642819008215257Suche in Google Scholar

Wyman, D.A., O’Neill, C., and Ayer, J.A. (2008) Evidence for modern-style subduction to 3.1 Ga; a plateau-adakite-gold (diamond) association. In K.C. Condie and V. Pease, Eds., When Did Plate Tectonics Begin on Planet Earth? Geological Society of America, 129–148.10.1130/2008.2440(06)Suche in Google Scholar

Xie, X., Mann, P., and Escalona, A. (2010) Regional provenance study of Eocene clastic sedimentary rocks within the South America-Caribbean plate boundary zone using detrital zircon geochronology. Earth and Planetary Science Letters, 291(1-4), 159–171.10.1016/j.epsl.2010.01.009Suche in Google Scholar

Received: 2020-02-21
Accepted: 2020-06-03
Published Online: 2020-12-31
Published in Print: 2021-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. P-V-T equation of state of hydrous phase A up to 10.5 GPa
  2. Elastic properties and structures of pyrope glass under high pressures
  3. Effects of pH and Ca exchange on the structure and redox state of synthetic Na-birnessite
  4. A systematic assessment of the diamond trap method for measuring fluid compositions in high-pressure experiments
  5. Origin, properties, and structure of breyite: The second most abundant mineral inclusion in super-deep diamonds
  6. Why Tolbachik diamonds cannot be natural
  7. Deciphering the enigmatic origin of Guyana’s diamonds
  8. Precipitation of low-temperature disordered dolomite induced by extracellular polymeric substances of methanogenic Archaea Methanosarcina barkeri: Implications for sedimentary dolomite formation
  9. Atomic-scale characterization of commensurate and incommensurate vacancy superstructures in natural pyrrhotites
  10. Three-dimensional and microstructural fingerprinting of gold nanoparticles at fluid-mineral interfaces
  11. Seaborgite, LiNa6K2(UO2)(SO4)5(SO3OH)(H2O), the first uranyl mineral containing lithium
  12. Reheating and magma mixing recorded by zircon and quartz from high-silica rhyolite in the Coqen region, southern Tibet
  13. Crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif, southern Italy
  14. New insights into the control of visible gold fineness and deposition: A case study of the Sanshandao gold deposit, Jiaodong, China
  15. A comment on “An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering”
  16. Reply to “A comment on ‘An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering’”
  17. New Mineral Names
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7486/html
Button zum nach oben scrollen