Home Physical Sciences Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P)
Article
Licensed
Unlicensed Requires Authentication

Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P)

  • Sergey N. Britvin , Michail N. Murashko , Yevgeny Vapnik , Yury S. Polekhovsky , Sergey V. Krivovichev , Maria G. Krzhizhanovskaya , Oleg S. Vereshchagin ORCID logo , Vladimir V. Shilovskikh ORCID logo and Natalia S. Vlasenko
Published/Copyright: March 1, 2020
Become an author with De Gruyter Brill

Abstract

This paper is a first detailed report of natural hexagonal solid solutions along the join Fe2P–Ni2P. Transjordanite, Ni2P, a Ni-dominant counterpart of barringerite (a low-pressure polymorph of Fe2P), is a new mineral. It was discovered in the pyrometamorphic phosphide assemblages of the Hatrurim Formation (the Dead Sea area, Southern Levant) and was named for the occurrence on the Transjordan Plateau, West Jordan. Later on, the mineral was confirmed in the Cambria meteorite (iron ungrouped, fine octahedrite), and it likely occurs in CM2 carbonaceous chondrites (Mighei group). Under reflected light, transjordanite is white with a beige tint. It is non-pleochroic and weakly anisotropic. Reflectance values for four COM recommended wavelengths are [Rmax/Rmin, % (λ, nm)]: 45.1/44.2 (470), 49.9/48.5 (546), 52.1/50.3 (589), 54.3/52.1 (650). Transjordanite is hexagonal, space group P62m; unit-cell parameters for the holotype specimen, (Ni1.72Fe0.27)1.99P1.02, are: a = 5.8897(3), c = 3.3547(2) Å, V = 100.78(1) Å3, Z = 3. Dcalc = 7.30 g/cm3. The crystal structure of holotype transjordanite was solved and refined to R1 = 0.013 based on 190 independent observed [I > 2σ(I)] reflections. The crystal structure represents a framework composed of two types of infinite rods propagated along the c-axis: (1) edge-sharing tetrahedra [M(1)P4] and (2) edge-sharing [M(2)P5] square pyramids. Determination of unit-cell parameters for 12 members of the Fe2P–Ni2P solid-solution series demonstrates that substitution of Ni for Fe in transjordanite and vice versa in barringerite does not obey Vegard’s law, indicative of preferential incorporation of minor substituent into M(1) position. Terrestrial transjordanite may contain up to 3 wt% Mo, whereas meteoritic mineral bears up to 0.2 wt% S.


† Deceased: September 29, 2018.


Acknowledgments

The authors gratefully acknowledge the curators of the Mining Museum, St. Petersburg Mining Institute, for providing the sample of the Cambria meteorite. We are thankful to the Associate Editor, Giacomo Diego Gatta, two anonymous reviewers, and the Technical Editor who contributed significantly to improving the quality of the manuscript.

  1. Funding

    This research was funded by Russian Science Foundation, grant 18-17-00079. The authors thank X‑ray Diffraction Centre, “Geomodel” Resource Centre and Nanophotonics Resoure Centre of St. Petersburg State University for providing instrumental and computational resources.

References cited

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (1995) Handbook of Mineralogy, vol. 3, 44 p. Mineral Data Publishing House, Tucson, Arizona.Search in Google Scholar

Balli, M., Fruchart, D., Gignoux, D., Tobola, J., Hlil, E.K., Wolfers, P., and Zach, R. (2007) Magnetocaloric effect in ternary metal phosphides (Fe1–xNix)2P. Journal of Magnetism and Magnetic Materials, 316, 358–360.10.1016/j.jmmm.2007.03.018Search in Google Scholar

Bariand, P., Cesbron, F., and Geffroy, J. (1977) Les minéraux, leurs gisements, leurs associations. Editions Minéraux et Fossiles. Bureau de Recherches Géologiques et Minières (France), 489 p (in French).Search in Google Scholar

Borodaev, Yu.S., Bogdanov, Yu.A., and Vyalsov, L.N. (1982) New nickel-free variety of schreibersite Fe3P, Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 111(6), 682–687 (in Russian).Search in Google Scholar

Brandstätter, F., Koeberl, C., and Kurat, G. (1991) The discovery of iron barringerite in lunar meteorite Y-793274. Geochimica et Cosmochimica Acta, 55, 1173–1174.10.1016/0016-7037(91)90170-ASearch in Google Scholar

Britvin, S.N. (2007) Phosphides in metal-rich meteorites. Ph.D. thesis, St. Petersburg State University, 203 p.Search in Google Scholar

Britvin, S.N., Kolomensky, V.D., Boldyreva, M.M., Bogdanova, A.N., Kretser, Yu.L., Boldyreva, O.N., and Rudashevskii, N.S. (1999) Nickelphosphide, (Ni,Fe)3P, the nickel analog of schreibersite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 128, 64–72 (in Russian).Search in Google Scholar

Britvin, S.N., Rudashevsky, N.S., Krivovichev, S.V., Burns, P.C., and Polekhovsky, Y.S. (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. American Mineralogist, 87, 1245–1249.10.2138/am-2002-8-924Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V. (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotic phosphorus. Scientific Reports, 5, 8355.10.1038/srep08355Search in Google Scholar

Britvin, S.N., Dolivo-Dobrovolsky, D.V., and Krzhizhanovskaya, M.G. (2017a) Software for processing the X‑ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104–107.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, E., Polekhovsky, Yu.S., and Krivovichev, S.V. (2017b) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits, 59, 619–625.10.1134/S1075701517070029Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Vlasenko, N.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361–369.10.1007/s00269-018-1008-4Search in Google Scholar

Britvin, S.N., Shilovskikh, V.V., Pagano, R., Vlasenko, N.S., Zaitsev, A.N., Krzhizhanovskaya, M.G., Lozhkin, M.S., Zolotarev, A.A., and Gurzhiy, V.V. (2019b) Allabogdanite, the high-pressure polymorph of (Fe,Ni)2P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Scientific Reports, 9, 1047.10.1038/s41598-018-37795-xSearch in Google Scholar

Britvin, S.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhano-vkaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019c) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineralogy and Petrology, 113, 237–248.10.1007/s00710-018-0647-ySearch in Google Scholar

Bruker (2003) SAINT (ver. 7.60A). Bruker AXS Inc., Madison, Wisconsin, USA.Search in Google Scholar

Bruker (2014) Topas 5.0. General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany.Search in Google Scholar

Buchwald, V.F. (1975) Handbook of iron meteorites. University of California Press, Berkeley, Los Angeles, London.Search in Google Scholar

Buchwald, V.F. (1976) The mineralogy of iron meteorites. Phylosophical Transactions of the Royal Society A, 286, 453–491.Search in Google Scholar

Burg, A., Kolodny, Ye., and Lyakhovsky, V. (1999) Hatrurim—2000: The “Mottled Zone” revisited, forty years later. Israel Journal of Earth Sciences, 48, 209–223.Search in Google Scholar

Buseck, P.R. (1969) Phosphide from meteorites: Barringerite, a new iron-nickel mineral. Science, 165, 169–171.10.1126/science.165.3889.169Search in Google Scholar

Carlsson, B., Goelin, M., and Rundqvist, S. (1973) Determination of the homogeneity range and refinement of the crystal structure of Fe2P. Journal of Solid State Chemistry, 8, 57–67.10.1016/0022-4596(73)90021-2Search in Google Scholar

Chen, K., Jin, Z., and Peng, Z. (1983) The discovery of iron barringerite (Fe2P) in China. Dizhi Kexue, 127–135 (in Chinese with English abstract).Search in Google Scholar

Denton, A.R., and Ashcroft, N.W. (1991) Vegard’s law. Physical Review A, 43, 3161–3164.10.1103/PhysRevA.43.3161Search in Google Scholar

Dera, P., Lavina, B., Borkowski, L.A., Prakapenka, V.B., Sutton, S.R., Rivers, M.L., Downs, R.T., Boctor, N.Z., and Prewitt, C.T. (2008) High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core. Geophysical Research Letters, 35, L10301.Search in Google Scholar

Dera, P., Lavina, B., Borkowski, L.A., Prakapenka, V.B., Sutton, S.R., Rivers, M.L., Downs, R.T., Boctor, N.Z., and Prewitt, C.T. (2009) Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores. Journal of Geophysical Research, 114, B03201.10.1029/2008JB005944Search in Google Scholar

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

Drake, S.M., Beard, A.D., Jones, A.P., Brown, D.J., Fortes, A.D., Millar, I.L., Carter, A., Baca, J., and Downes, H. (2018) Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland. Geology, 46, 171–174.10.1130/G39452.1Search in Google Scholar

Eremenko, G.K., Polkanov, Yu.A., and Gevork’yan, V.Kh. (1974) Cosmogenic minerals in the Poltava deposits of the Konka–Yalynsk depression in northern Azov Region. Mineralogiya Osadochnih Obrazovaniy, 1, 66–76 (in Russian).Search in Google Scholar

Fruchart, R., Roger, A., and Sénateur, J.P. (1969) Crystallographic and magnetic properties of solid solutions of the phosphides M2P, M = Cr, Mn, Fe, Co, and Ni. Journal of Applied Physics, 40, 1250–1257.10.1063/1.1657617Search in Google Scholar

Fujii, H., Hōkabe, T., Fujiwara, H., and Okamoto, T. (1978) Magnetic properties of single crystals of the system (Fe1–xNix)2P. Journal of the Physical Society of Japan, 44, 96–100.10.1143/JPSJ.44.96Search in Google Scholar

Geller, Y.I., Burg, A., Halicz, L., and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 25–36.10.1016/j.chemgeo.2012.09.029Search in Google Scholar

Gibard, C., Gorrell, I.B., Jimenez, E.I., Kee, T.P., Pasek, M.A., and Krishnamurthy, R. (2019) Geochemical sources and availability of amidophosphates on the early Earth. Angewandte Chemie, International Edition, 58, 8151–8155.10.1002/anie.201903808Search in Google Scholar

Goldstein, J.I., Scott, E.R.D., and Chabot, N.L. (2009) Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde: Geochemistry, 69, 293–325.10.1016/j.chemer.2009.01.002Search in Google Scholar

Gounelle, M., Zolensky, M.E., Liou, J.-C., Bland, P.A., and Alard, O. (2003) Mineralogy of carbonaceous chondritic microclasts in howardites: identification of CM2 fossil micrometeorites. Geochimica et Cosmochimica Acta, 67, 507–527.10.1016/S0016-7037(02)00985-7Search in Google Scholar

Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 1–80.Search in Google Scholar

He, X.-J., Guo, J.-Z., Wu, X., Huang, S.-X., Qin, F., Gu, X.-P., and Qin, S. (2019) Compressibility of natural schreibersite up to 50 GPa. Physics and Chemistry of Minerals, 46, 91–99.10.1007/s00269-018-0990-xSearch in Google Scholar

Hitihami-Mudiyanselage, A., Arachchige, M.P., Seda, T., Lawes, G., and Brock, S.L. (2015) Synthesis and characterization of discrete FexNi2-xP nanocrystals (0 < x < 2): compositional effects on magnetic properties. Chemistry of Materials, 27, 6592–6600.10.1021/acs.chemmater.5b02149Search in Google Scholar

Kitadai, N., and Maruyama, S. (2018) Origins of building blocks of life: A review. Geoscience Frontiers, 9, 1117–1153.10.1016/j.gsf.2017.07.007Search in Google Scholar

Kolodny, Y., Burg, A., Geller, Y.I., Halicz, L., and Zakon, Y. (2014) Veins in the combusted metamorphic rocks, Israel; Weathering or a retrograde event? Chemical Geology, 385, 140–155.10.1016/j.chemgeo.2014.07.006Search in Google Scholar

Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591, 1220–1247.10.1086/375492Search in Google Scholar

Maeda, Y., and Takashima, Y. (1973) Mössbauer studies of FeNiP and related compounds. Journal of Inorganic and Nuclear Chemistry, 35, 1963–1969.10.1016/0022-1902(73)80134-4Search in Google Scholar

Mikouchi, T., Zolensky, M., Tachikawa, O., Komatsu, M., Ivanova, M.A., Le, L., and Gounelle, M. (2006) Electron back-scatter diffraction (EBSD) analysis of two unusual minerals in carbonaceous chondrites. Lunar and Planetary Science, 37, 1855–1856.Search in Google Scholar

Minin, D.A., Shatskiy, A.F., Litasov, K.D., and Ohfuji, H. (2018) The Fe–Fe2P phase diagram at 6 GPa. High Pressure Research, 39, 50–68.10.1080/08957959.2018.1562552Search in Google Scholar

Nazarov, M.A., Brandstätter, F., and Kurat, G. (1994) P-rich sulfide, barringerite, and other phases in carbonaceous clasts of the Erevan howardite. Proceedings of 25th Lunar and Planetary Science Conference, 979–980.Search in Google Scholar

Nazarov, M.A., Kurat, G., Brandstätter, F., Ntaflos, T., Chaussidon, M., and Hoppe, P. (2009) Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology, 17, 101–123.10.1134/S0869591109020015Search in Google Scholar

Novikov, I., Vapnik, Ye., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, Southern Levant. Geoscience Frontiers, 4, 597–619.10.1016/j.gsf.2013.02.005Search in Google Scholar

Okamoto, H. (1990) The Fe-P (iron-phosphorus) system. Bulletin of Alloy Phase Diagrams, 11, 404–412.10.1007/BF02843320Search in Google Scholar

Pasek, M.A., Gull, M., and Herschy, B. (2017) Phosphorylation on the early earth. Chemical Geology, 475, 149–170.10.1016/j.chemgeo.2017.11.008Search in Google Scholar

Pawley, G.S. (1981) Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography, 14, 357–361.10.1107/S0021889881009618Search in Google Scholar

Pierrot, R., Pulou, R., and Picot, P. (1977). Inventaire Minéralogique de la France N° 7: Aveyron. Bureau de Recherches Géologiques et Minières (France), 223 pp. (in French).Search in Google Scholar

Romig, A.D., and Goldstein, J.I. (1980) Determination of the Fe–Ni and Fe–Ni–P phase diagrams at low temperatures (700–300 °C). Metallurgical Transactions, 11A:1151–1159.10.1007/BF02668139Search in Google Scholar

Rundqvist, S. (1962) X‑ray investigations of Mn3P, Mn2P, and Ni2P. Acta Chemica Scandinavica, 16, 992–998.10.3891/acta.chem.scand.16-0992Search in Google Scholar

Rundquist, S., and Jellinek, F. (1959) The structures of Ni6Si2B, Fe2P and some related phases. Acta Chemica Scandinavica, 13, 425–432.10.3891/acta.chem.scand.13-0425Search in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica C, 71, 3–8.10.1107/S2053229614024218Search in Google Scholar

Schmetterer, C., Vizdal, J., and Ipser, H. (2009) A new investigation of the system Ni–P. Intermetallics, 17, 826–834.10.1016/j.intermet.2009.03.011Search in Google Scholar

Sénateur, J., Fruchart, D., Boursier, D., Rouault, A., Montreuil, J.R., and Deyris, B. (1977) Analyse des facteurs d’ordre des métaux de transition dans les phosphures et arséniures MM’P et MM’As. Journal de Physique Colloques, 38, C7-61–C7-66.10.1051/jphyscol:1977712Search in Google Scholar

Sénateur, J. P., Rouault, A., and Fruchart, R. (1976) Etude par spectrometrie Mossbauer des transformations cristallographiques sous hautes pressions de MnFeAs et Fe2P. Materials Research Bulletin, 11, 631–636.10.1016/0025-5408(76)90137-9Search in Google Scholar

Skála, R., and Císařová, I. (2005) Crystal structure of meteoritic schreibersites: determination of absolute structure. Physics and Chemistry of Minerals, 31, 721–732.10.1007/s00269-004-0435-6Search in Google Scholar

Sokol, E.V., Kokh, S.N., Sharygin, V.V., Danilovsky, V.A., Seryotkin, Yu.V., Liferovich, R., Deviatiiarova, A. S., Nigmatulina, E.N., and Karmanov, N.S. (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: implications for storage and partitioning of elements in oil shale clinkering. Minerals, 9, 465.10.3390/min9080465Search in Google Scholar

Stoe (2003) WinXPOW, ver. 2.08. STOE & Cie GmbH, Darmstadt.Search in Google Scholar

Sudagar, J., Lian, J., and Sha, W. (2013) Electroless nickel, alloy, composite and nano coatings—A critical review. Journal of Alloys and Compounds, 571, 183–204.10.1016/j.jallcom.2013.03.107Search in Google Scholar

Vapnik, Y., Sharygin, V.V., Sokol, E.V., and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. The Geological Society of America, Reviews in Engineering Geology, 18, 133–153.Search in Google Scholar

Wexler, R.B., Martirez, J.M.P., and Rappe, A.M. (2016) Stable phosphorus-enriched (0001) surfaces of nickel phosphides. Chemistry of Materials, 28, 5365–5372.10.1021/acs.chemmater.6b01437Search in Google Scholar

Yang, J.S., Bai, W.J., Rong, H., Zhang, Z.M., Xu, Z.Q., Fang, Q.S., Yang, B.G., Li, T.F., Ren, Y.F., Chen, S.Y., and others. (2005) Discovery of Fe2P alloy in garnet peridotite from the Chinese continental scientific drilling project (CCSD) main hole. Acta Petrologica Sinica, 21, 271–276.Search in Google Scholar

Yao, A. (2003) Study on gangue of tonstein within no. 5 coal-bed in Hulstai Coal District, Ningxia. Northwestern Geology, 36, 78–83 (in Chinese, with English abstract).Search in Google Scholar

Zach, R., Tobola, J., Sredniawa, B., Kaprzyk, S., Casado, C., Bacmann, M., and Fruchart, D. (2004) Magneto-elastic properties and electronic structure analysis of the (Fe1-xNix)2P system. Journal of Alloys and Compounds, 383, 322–327.10.1016/j.jallcom.2004.04.039Search in Google Scholar

Zen, E. (1956) Validity of “Vegard’s law”. American Mineralogist, 41, 523–524.Search in Google Scholar

Zucchini, A., Petrelli, M., Frondini, F., Petrone, C.M., Sassi, P., Di Michele, A., Palmerini, S., Trippella, O., and Busso, M. (2018) Chemical and mineralogical characterization of the Mineo (Sicily, Italy) pallasite: a unique sample. Meteoritics and Planetary Science, 53, 268–283.10.1111/maps.13002Search in Google Scholar

Received: 2019-09-03
Accepted: 2019-11-15
Published Online: 2020-03-01
Published in Print: 2020-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Heavy halogen geochemistry of martian shergottite meteorites and implications for the halogen composition of the depleted shergottite mantle source
  2. The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador)
  3. Pressure dependence of Si diffusion in γ-Fe
  4. Seismic detectability of carbonates in the deep Earth: A nuclear inelastic scattering study
  5. Equations of state, phase relations, and oxygen fugacity of the Ru-RuO2 buffer at high pressures and temperatures
  6. Experimental determination of the phase relations of Pt and Pd antimonides and bismuthinides in the Fe-Ni-Cu sulfide systems between 1100 and 700 °C
  7. Layer stacking disorder in Mg-Fe chlorites based on powder X-ray diffraction data
  8. Elasticity of single-crystal Fe-enriched diopside at high-pressure conditions: Implications for the origin of upper mantle low-velocity zones
  9. XANES spectroscopy of sulfides stable under reducing conditions
  10. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range, NE China
  11. Textural and compositional evolution of iron oxides at Mina Justa (Peru): Implications for mushketovite and formation of IOCG deposits
  12. Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan
  13. Negevite, the pyrite-type NiP2, a new terrestrial phosphide
  14. Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P)
Downloaded on 6.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7275/html?lang=en
Scroll to top button