Home Negevite, the pyrite-type NiP2, a new terrestrial phosphide
Article
Licensed
Unlicensed Requires Authentication

Negevite, the pyrite-type NiP2, a new terrestrial phosphide

  • Sergey N. Britvin , Michail N. Murashko , Yevgeny Vapnik , Yury S. Polekhovsky , Sergey V. Krivovichev , Oleg S. Vereshchagin ORCID logo , Vladimir V. Shilovskikh ORCID logo and Maria G. Krzhizhanovskaya
Published/Copyright: March 1, 2020
Become an author with De Gruyter Brill

Abstract

Negevite, ideally NiP2, is a new phosphide mineral from pyrometamorphic complex of the Hatrurim Formation (the Mottled Zone), Southern Levant. It is found in phosphide assemblages of the Hatrurim Basin, south Negev Desert, Israel, and Daba-Siwaqa complex, Jordan. The mineral occurs as tiny isometric grains reaching 15 μm in size and forms intimate intergrowths with other phosphides related to the Fe-Ni-P system. In reflected light, negevite is white with yellowish tint and isotropic. Reflectance values for COM recommended wavelengths [R (%), λ (nm)] are as follows: 54.6 (470), 55.0 (546), 55.3 (589), 55.6 (650). Chemical composition of the holotype specimen (electron micro-probe, wt%): Ni 42.57, Co 3.40, Fe 2.87, P 42.93, S 8.33, total 100.10, corresponding to the empirical formula (Ni0.88Co0.07Fe0.06)S1.01(P1.68S0.31)S1.99. The crystal structure of negevite was solved and refined to R1 = 1.73% based on 52 independent observed [I >2σ(I)] reflections. The mineral is cubic, space group Pa3̅, a = 5.4816(5) Å, V = 164.71(3) Å3, and Z = 4. Dx = 4.881(1) g/cm3 calculated on the basis of the empirical formula. Negevite is a first natural phosphide belonging to the pyrite structure type. It is a chemical and structural analog of vaesite, NiS2, krutovite, NiAs2, and penroseite, NiSe2. The well-explored catalytic and photocatalytic properties of a synthetic counterpart of negevite could provide new insights into the possible role of higher phosphides as a source of low-valent phosphorus in prebiotic phosphorylation processes.

Acknowledgments and Funding

This research was funded by Russian Science Foundation, grant 18-17-00079. We thank the referees, Evgeny Galuskin and Inna Lykova, for the helpful comments and discussion of the manuscript. Associate Editor Fabrizio Nestola is thanked for handling of the review process. The authors thank X‑ray Diffraction Centre, “Geomodel” Resource Centre and Nanophotonics Resoure Centre of St. Petersburg State University for providing instrumental and computational resources.

References cited

Barry, B.M., and Gillan, E.G. (2008) Low-temperature solvothermal synthesis of phosphorus-rich transition-metal phosphides. Chemistry of Materials, 20, 2618–2620.10.1021/cm703095zSearch in Google Scholar

Barry, B.M., and Gillan, E.G. (2009) A general and flexible synthesis of transition-metal polyphosphides via PCl3 elimination. Chemistry of Materials, 21, 4454–4461.10.1021/cm9010663Search in Google Scholar

Berzelius, J.J. (1832) Undersökning af en vid Bohumiliz I Böhmen funnen jernmassa. Kongelige Svenska Vetenskaps-Academiens Handlingar, 106–119.Search in Google Scholar

Bindi, L., Cipriani, C., Pratesi, G., and Trosti-Ferroni, R. (2008) The role of isomorphous substitutions in natural selenides belonging to the pyrite group. Journal of Alloys and Compounds, 459, 553–556.10.1016/j.jallcom.2007.05.049Search in Google Scholar

Britvin, S.N., Kolomensky, V.D., Boldyreva, M.M., Bogdanova, A.N., Kretser, Yu.L., Boldyreva, O.N., and Rudashevskii, N.S. (1999) Nickelphosphide, (Ni,Fe)3P, the nickel analog of schreibersite. Zapiski Vsesoyuznogo Mineral-ogicheskogo Obshchestva, 128, 64–72 (in Russian).Search in Google Scholar

Britvin, S.N., Rudashevsky, N.S., Krivovichev, S.V., Burns, P.C., and Polekhovsky, Y.S. (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. American Mineralogist, 87, 1245–1249.10.2138/am-2002-8-924Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V. (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotc phosphorus. Scientific Reports, 5, 8355.10.1038/srep08355Search in Google Scholar PubMed PubMed Central

Britvin, S.N., Murashko, M.N., Vapnik, E., Polekhovsky, Yu.S., Krivovichev, S.V. (2017) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits, 59, 619–625.10.1134/S1075701517070029Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Vlasenko, N.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361–369.10.1007/s00269-018-1008-4Search in Google Scholar

Britvin, S.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V., Krzhizhanovkaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineralogy and Petrology, 113, 237–248.10.1007/s00710-018-0647-ySearch in Google Scholar

Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Vapnik, Y., Shilovskikh, V.V., and Lozhkin, M.S. (2019c) Nazarovite, IMA 2019-013. CNMNC Newsletter No. 50; Mineralogical Magazine, 83, doi: 10.1180/mgm.2019.46.10.1180/mgm.2019.46Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Zaitsev, A.N., Shilovskikh, V.V., Vasiliev, E.A., Krzhizhanovskaya, M.G., and Vlasenko, N.S. (2019d) IMA 2019-039. CNMNC Newsletter No. 51; European Journal of Mineralogy, 31, doi: 10.1127/ejm/2019/0031-2894.10.1127/ejm/2019/0031-2894Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Shilovskikh, V.V., and Vlasenko, N.S. (2020a) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). American Mineralogist, 105, doi: 10.2138/am-2020-7275.10.2138/am-2020-7275Search in Google Scholar

Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., Vlasenko, N.S, and Krzhizhanovskaya, M.G. (2020b) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals, doi: 10.1007/s00269-019-01073-7.10.1007/s00269-019-01073-7Search in Google Scholar

Bruker (2003) SAINT (ver. 7.60A). Bruker AXS Inc., Madison, Wisconsin.Search in Google Scholar

Buchwald, V.F. (1975) Handbook of iron meteorites. University of California Press, Berkeley, Los Angeles.Search in Google Scholar

Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Ye. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107–124.Search in Google Scholar

Buseck, P.R. (1969) Phosphide from meteorites: Barringerite, a new iron-nickel mineral. Science, 165, 169–171.10.1126/science.165.3889.169Search in Google Scholar PubMed

Dera, P., Lavina, B., Borkowski, L.A., Prakapenka, V.B., Sutton, S.R., Rivers, M.L., Downs, R.T., Boctor, N.Z., and Prewitt, C.T. (2008) High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core. Geophysical Research Letters, 35, L10301.Search in Google Scholar

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

Donohue, P.C., Bither, T.A., and Young, H.S. (1968) High-pressure synthesis of pyrite-type nickel diphosphide and nickel diarsenide. Inorganic Chemistry, 7, 998–1001.10.1021/ic50063a031Search in Google Scholar

Dowty, E. (2006) ATOMS for Windows. Shape Software, Kingsport, Tennessee.Search in Google Scholar

Galuskin, E.V., Kusz, J., Armbruster, T., Galuskina, I.O., Marzec, K., Vapnik, Ye., and Murashko, M. (2013) Vorlanite, (CaU6+)O4, from Jabel Harmun, Palestinian Autonomy, Israel. American Mineralogist, 98, 1938–1942.10.2138/am.2013.4548Search in Google Scholar

Galuskin, E.V., Galuskina, I.O., Kusz, J., Armbruster, T., Marzec, K., Dzierzanowski, P., and Murashko, M. (2014) Vapnikite Ca3UO6—a new double perovskite mineral from pyrometamorphic larnite rocks of the Jebel Harmun, Palestine Autonomy, Israel. Mineralogical Magazine, 78, 571–581.10.1180/minmag.2014.078.3.07Search in Google Scholar

Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M., and Galuskin, E.V. (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965–975.10.2138/am.2014.4563Search in Google Scholar

Geller, Y.I., Burg, A., Halicz, L., and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 25–36.10.1016/j.chemgeo.2012.09.029Search in Google Scholar

Gibard, C., Gorrell, I.B., Jimenez, E.I., Kee, T.P., Pasek, M.A., and Krishnamurthy, R. (2019) Geochemical sources and availability of amidophosphates on the early Earth. Angewandte Chemie, International Edition, 58, 8151–8155.10.1002/anie.201903808Search in Google Scholar PubMed

Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 1–80.Search in Google Scholar

Gillot, F., Boyanov, S., Dupont, L., Doublet, M.-L., Morcrette, M., Monconduit, L., and Tarascon, J.-M. (2005) Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries. Chemistry of Materials, 17, 6327–6337.10.1021/cm051574bSearch in Google Scholar

Gu, T., Wu, X., Qin, S., and Dubrovinsky, L. (2011) In situ high-pressure study of FeP: Implications for planetary cores. Physics of the Earth and Planetary Interiors, 184, 154–159.10.1016/j.pepi.2010.11.004Search in Google Scholar

Gu, T., Wu, X., Qin, S., Liu, J., Li, Y., and Zhang, Y. (2012) High-pressure and high-temperature in situ X‑ray diffraction study of FeP2 up to 70 GPa. Chinese Physics Letters, 29, 026102.10.1088/0256-307X/29/2/026102Search in Google Scholar

Gu, T., Fei, Y., Wu, X., and Qin, S. (2014) High-pressure behavior of Fe3P and the role of phosphorus in planetary cores. Earth and Planetary Science Letters, 390, 296–303.10.1016/j.epsl.2014.01.019Search in Google Scholar

Hauff, P.L., Foord, E.E., Rosenblum, S., and Hakki, W. (1983) Hashemite, Ba(Cr,S)O4, a new mineral from Jordan. American Mineralogist, 68, 1223–1225.Search in Google Scholar

Jiang, P., Liu, Q., and Sun, X. (2014) NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 6, 13440–13445.10.1039/C4NR04866KSearch in Google Scholar PubMed

Kerr, P.F. (1945) Cattierite and vaesite: New Co-Ni minerals from the Belgian Congo. American Mineralogist, 30, 483–497.Search in Google Scholar

Khoury, H.N., Sokol, E.V., Kokh, S.N. Seryotkin, Yu.V., Kozmenko, O.A., Goryainov, S.V., and Clark, I.D. (2016) Intermediate members of the lime-monteponite solid solutions (Ca1–xCdxO, x = 0.36–0.55): Discovery in natural occurrence. American Mineralogist, 101, 146–161.10.2138/am-2016-5361Search in Google Scholar

Kitadai, N., and Maruyama, S. (2018) Origins of building blocks of life: A review. Geoscience Frontiers, 9, 1117–1153.10.1016/j.gsf.2017.07.007Search in Google Scholar

Kolodny, Y., Burg, A., Geller, Y.I., Halicz, L., and Zakon, Y. (2014) Veins in the combusted metamorphic rocks, Israel; Weathering or a retrograde event? Chemical Geology, 385, 140–155.10.1016/j.chemgeo.2014.07.006Search in Google Scholar

Larsson, E. (1965) An X‑ray investigation of the Ni-P system and the crystal structures of NiP and NiP2. Arkiv för Kemi, 23, 335–365.Search in Google Scholar

Li, L., and Ghahreman, A. (2018) The synergistic effect of Cu2+–Fe2+–Fe3+ acidic system on the oxidation kinetics of Ag-doped pyrite. The Journal of Physical Chemistry C, 122, 26897–26909.10.1021/acs.jpcc.8b06727Search in Google Scholar

Möller, M.H., and Jeitschko, W. (1982) Darstellung, Eigenschaften und Kristall-struktur von Cu2P7 und Strukturverfeinerungen von CuP2 und AgP2. Zeitschrift für Anorganische und Allgemeine Chemie, 491, 225–236.10.1002/zaac.19824910129Search in Google Scholar

Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, E., Britvin, S.N., Krivovichev, S.V., Polekhovsky, Yu.S., and Ivakin, Yu.D. (2010) Barioferrite BaFe3+ 12O19 a new magnetoplumbite-group mineral from Hatrurim Formation, Israel. Geology of Ore Deposits, 53(7), 558–563.10.1134/S1075701511070142Search in Google Scholar

Novikov, I., Vapnik, Ye., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, Southern Levant. Geoscience Frontiers, 4, 597–619.10.1016/j.gsf.2013.02.005Search in Google Scholar

Orishchin, S.V., Babizhet’sky, V.S., and Kuz’ma, Yu.B. (2000) Reinvestigation of the NiP2 structure. Crystallography Reports, 45, 894–895.10.1134/1.1327645Search in Google Scholar

Owens-Baird, B., Xu, J., Petrovykh, D.Y., Bondarchuk, O., Ziouani, Y., González-Ballesteros, N., Yox, P., Sapountzi, F.M., Niemantsverdriet, H., Kolen’ko, Yu.V., and Kovnir, K. (2019) NiP2: a story of two divergent polymorphic multifunctional materials. Chemistry of Materials, 31, 3407–3418.10.1021/acs.chemmater.9b00565Search in Google Scholar

Papike, J.J., Ed. (1998) Planetary Materials, 36, 1052 p. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501508806Search in Google Scholar

Pasek, M.A., Gull, M., and Herschy, B. (2017) Phosphorylation on the early Earth. Chemical Geology, 475, 149–170.10.1016/j.chemgeo.2017.11.008Search in Google Scholar

Pauly, H. (1969) White cast iron with cohenite, schreibersite, and sulphides from Tertiary basalts on Disko, Greenland. Bulletin of the Geological Society of Denmark, 19, 8–26.Search in Google Scholar

Pratesi, G., Bindi, L., and Moggi-Cecci, V. (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. American Mineralogist, 91, 451–454.10.2138/am.2006.2095Search in Google Scholar

Scott, H.P., Huggins, S., Frank, M.R., Maglio, S.J., Martin, C.D., Meng, Y., Santillán, J., and Williams, Q. (2007) Equation of state and high-pressure stability of Fe3P-schreibersite: Implications for phosphorus storage in planetary cores. Geophysical Research Letters, 34, L06302.10.1029/2006GL029160Search in Google Scholar

Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I., Galuskin, E.V., Vapnik, Ye., Britvin, N., and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+AlO8—a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97–111.10.1127/0935-1221/2013/0025-2259Search in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Search in Google Scholar

Sokol, E.V., Maksimova, N.V., Nigmatulina, E.N., Sharygin, V.V., and Kalugin, V.M. (2005) Combustion Metamorphism, 284 p. Publishing House of the Siberian Branch of the Russian Academy of Science, Novosibirsk (in Russian).Search in Google Scholar

Sokol, E.V., Gaskova, O.L., Kokh, S.N., Kozmenko, O.A., Seryotkin, Y.V., Vapnik, Y., Murashko, M.N. (2011) Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. American Mineralogist, 96, 659–674.10.2138/am.2011.3487Search in Google Scholar

Vapnik, Y., Sharygin, V.V., Sokol, E.V., and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. The Geological Society of America, Reviews in Engineering Geology, 18, 133–153.Search in Google Scholar

Vinogradova, R.A., Rudashevskii, N.S., Bud’ko, I.A., Bochek, L.I., Kaspar, P., and Padera, K. (1976) Krutovite—a new cubic nickel diarsenide. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 105, 59–71 (in Russian).10.1080/00206817709471017Search in Google Scholar

Weber, D., and Bischoff, A. (1994) Grossite (CaAl4O7)—a rare phase in terrestrial and extraterrestrial rocks. European Journal of Mineralogy, 6, 591–594.10.1127/ejm/6/4/0591Search in Google Scholar

Received: 2019-07-03
Accepted: 2019-10-31
Published Online: 2020-03-01
Published in Print: 2020-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Heavy halogen geochemistry of martian shergottite meteorites and implications for the halogen composition of the depleted shergottite mantle source
  2. The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador)
  3. Pressure dependence of Si diffusion in γ-Fe
  4. Seismic detectability of carbonates in the deep Earth: A nuclear inelastic scattering study
  5. Equations of state, phase relations, and oxygen fugacity of the Ru-RuO2 buffer at high pressures and temperatures
  6. Experimental determination of the phase relations of Pt and Pd antimonides and bismuthinides in the Fe-Ni-Cu sulfide systems between 1100 and 700 °C
  7. Layer stacking disorder in Mg-Fe chlorites based on powder X-ray diffraction data
  8. Elasticity of single-crystal Fe-enriched diopside at high-pressure conditions: Implications for the origin of upper mantle low-velocity zones
  9. XANES spectroscopy of sulfides stable under reducing conditions
  10. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range, NE China
  11. Textural and compositional evolution of iron oxides at Mina Justa (Peru): Implications for mushketovite and formation of IOCG deposits
  12. Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan
  13. Negevite, the pyrite-type NiP2, a new terrestrial phosphide
  14. Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P)
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7192/html
Scroll to top button