Startseite Cl-bearing fluorcalciobritholite in high-Ti basalts from Apollo 11 and 17: Implications for volatile histories of late-stage lunar magmas
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cl-bearing fluorcalciobritholite in high-Ti basalts from Apollo 11 and 17: Implications for volatile histories of late-stage lunar magmas

  • James P. Greenwood EMAIL logo , Kenichi Abe und Benjamin McKeeby
Veröffentlicht/Copyright: 23. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We report the occurrence of a previously unidentified mineral in lunar samples: a Cl-,F-,REE-rich silico-phosphate identified as Cl-bearing fluorcalciobritholite. This mineral is found in late-stage crystallization assemblages of slowly cooled high-Ti basalts 10044, 10047, 75035, and 75055. It occurs as rims on fluorapatite or as a solid-solution between fluorapatite and Cl-fluorcalciobritholite. The Cl-fluorcalciobritholite appears to be nominally anhydrous. The Cl and Fe2+ of the lunar Cl-fluorcalciobritholite distinguishes it from its terrestrial analog. The textures and chemistry of the Cl-fluorcalciobritholite argue for growth during the last stages of igneous crystallization, rather than by later alteration/replacement by Cl-, REE-bearing metasomatic agents in the lunar crust. The igneous growth of this Cl- and F-bearing and OH-poor mineral after apatite in the samples we have studied suggests that the Lunar Apatite Paradox model (Boyce et al. 2014) may be inapplicable for high-Ti lunar magmas. This new volatile-bearing mineral has important potential as a geochemical tool for understanding Cl isotopes and REE chemistry of lunar samples.


† Present address: Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A

Orcid 0000-0003-0502-9526.


Acknowledgments and Funding

We thank J. Eckert for assistance with EPMA, T. Glotch with assistance with Micro-Raman spectroscopy, Z. Jiang and S. Karato for assistance with EBSD, Wesleyan students S. Mahmood and M. Lowe, NASA Connecticut Space Grant Consortium, NASA grants NNX11AB29G and NNX14AQ76G (J.P.G.), and support of the Wesleyan Field Emission SEM by NSF-MRI 1725491 (J.P.G.).

References cited

Barnes, J.J., Franchi, I.A., Anand, M., Tartèse, R., Starkey, N.A., Koike, M., Sano, Y., and Russell, S.S. (2013) Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chemical Geology, 337, 48–55.10.1016/j.chemgeo.2012.11.015Suche in Google Scholar

Barnes, J.J., Tartèse, R., Anand, M., McCubbin, F.M., Franchi, I.A., Starkey, N.A., and Russell, S.S. (2014) The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 390, 244–252.10.1016/j.epsl.2014.01.015Suche in Google Scholar

Barnes, J.J., Tartèse, R., Anand, M., McCubbin, F.M., Neal, C.R., and Franchi, I.A. (2016) Early degassing of lunar urKREEP by crust-breaching impact(s). Earth and Planetary Science Letters, 447, 84–94.10.1016/j.epsl.2016.04.036Suche in Google Scholar

Beaty, D.W. and Albee, A.L. (1978) Comparative petrology and possible genetic relations among the Apollo 11 basalts. Proceedings of the 9th Lunar Planetary Science Conference, p. 359–463.Suche in Google Scholar

Boyce, J.W., Liu, Y., Rossman, G.R., Guan, Y., Eiler, J.M., Stolper, E.M., and Taylor, L.A. (2010) Lunar apatite with terrestrial volatile abundances. Nature, 466, 466–470.10.1038/nature09274Suche in Google Scholar

Boyce, J.W., Tomlinson, S.M., McCubbin, F.M., Greenwood, J.P., and Treiman, A.H. (2014) The Lunar Apatite Paradox. Science, 344, 400–402.10.1126/science.1250398Suche in Google Scholar

Boyce, J.W., Treiman, A.H., Guan, Y., Ma, C., Eiler, J.M., Gross, J., Greenwood, J.P., and Stolper E.M. (2015) The chlorine isotope fingerprint of the lunar magma ocean. Science Advances 1, DOI:10.1126/sciadv.1500380.10.1126/sciadv.1500380Suche in Google Scholar

Boyce, J.W., Kanee, S.A., McCubbin, F.M., Barnes, J.J., Bricker, H., and Treiman, A.H. (2018) Early loss, fractionation, and redistribution of chlorine in the Moon as revealed by the lunar low-Ti mare basalt suite. Earth and Planetary Science Letters, 500, 205–214.10.1016/j.epsl.2018.07.042Suche in Google Scholar

Dymek, R.F., Albee, A.L., and Chodos, A.A. (1975) Comparative mineralogy and petrology of Apollo 17 mare basalts: Samples 70215, 71055, 74255, and 75055. Proceedings of the 6th Lunar Planetary Science Conference, 49–77.Suche in Google Scholar

Fuchs, L.H. (1970) Fluorapatite and other accessory minerals in Apollo 11 rocks. Proceedings of the Apollo 11 Lunar Science Conference, 475–479.Suche in Google Scholar

Greenwood, J.P., Itoh, S., Sakamoto, N., Warren, P., Taylor, L., and Yurimoto, H. (2011) Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geoscience, 4, 79–82.10.1038/ngeo1050Suche in Google Scholar

Jolliff, B.L., Haskin, L.A., Colson, R.O., and Wadhwa, M. (1993) Partitioning in REE-saturating minerals: Theory, experiment, and modeling of whitlockite, apatite, and evolution of lunar residual magmas. Geochimica et Cosmochimica Acta, 57, 4069–4094.10.1016/0016-7037(93)90354-YSuche in Google Scholar

Keil, K., Prinz, M., and Bunch, T.E. (1970) Mineral chemistry of lunar samples. Science, 167, 597–599.10.1126/science.167.3918.597Suche in Google Scholar PubMed

Lafuente, B., Downs R.T., Yang H., and Stone, N. (2015) The power of databases: the RRUFF project. In T. Armbruster and R. Danisi, Eds., Highlights in Mineralogical Crystallography, pp. 1–30. DeGruyter.10.1515/9783110417104-003Suche in Google Scholar

Longhi, J., Walker, D., Grove, T.L., Stolper, E.M., and Hays, J.F. (1974) The petrology of the Apollo 17 mare basalts. Proceedings of the 5th Lunar Planetary Science Conference, p. 447–469.Suche in Google Scholar

Lovering, J.F., Wark, D.A., Gleadow, A.J.W., and Britten, R. (1974) Lunar monazite: A late-stage (mesostasis) phase in mare basalt. Earth and Planetary Science Letters, 21, 164–168.10.1016/0012-821X(74)90050-8Suche in Google Scholar

Macdonald, R., Baginski, B., Belkin, H.E., Dzierzanowski, P., and Jezak, L. (2008) REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineralogical Magazine, 72, 1147–1161.10.1180/minmag.2008.072.6.1147Suche in Google Scholar

McCubbin, F.M., Steele, A., Hauri, E., Nekvasil, H., Yamahita, S., and Helmley, R.J. (2010) Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of Sciences, 107, 11,223–11,228.10.1073/pnas.1006677107Suche in Google Scholar

McCubbin, F.M., Vander Kaaden, K.E., Tartèse, R., Klima, R.L., Liu, Y., Mortimer, J., Barnes, J.J., Shearer, C.K., Treiman, A.H., Lawrence, D.J., and others. (2015) Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. American Mineralogist, 100, 1668–1707.10.2138/am-2015-4934CCBYNCNDSuche in Google Scholar

Meyer, C. (2010) Lunar sample compendium. Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, Texas, Abstract 1016.Suche in Google Scholar

Neal, C.R., and Taylor, L.A. (1991) Evidence for metasomatism of the lunar highlands and the origin of whitlockite. Geochimica et Cosmochimica Acta, 55, 2965–2980.10.1016/0016-7037(91)90462-ESuche in Google Scholar

Papike, J.J., Ryder, G., and Shearer, C.K. (1998) Lunar samples. In J.J. Papike, Ed., Planetary Materials, p. 234–397. Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501508806Suche in Google Scholar

Pasero, M. Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163–179.10.1127/0935-1221/2010/0022-2022Suche in Google Scholar

Pekov, I.V., Pasero, M., Yaskovskaya, A.N., Chukanov, N.V., Pushcharovsky, D.Y., Merlino, S., Zubkova, N.V., Kononkova, N.N., Men’shikov, Y.P., and Zadov, A.E. (2007) Fluorcalciobritholite, (Ca,REE)5[(Si,P)]O43F, a new mineral: description and crystal chemistry. European Journal of Mineralogy, 19, 95–103.10.1127/0935-1221/2007/0019-0095Suche in Google Scholar

Petrella, L., Williams-Jones, A.E., Goutier, J., and Walsh, J. (2014) The nature and origin of rare earth element mineralization in the Misery syenitic intrusion, Northern Quebec, Canada. Economic Geology, 109, 1643–1666.10.2113/econgeo.109.6.1643Suche in Google Scholar

Reed, G.W. Jr., Jovanovic, S., and Fuchs, L.H. (1970) Trace elements and accessory minerals in lunar samples. Science, 167, 501–503.10.1126/science.167.3918.501Suche in Google Scholar

Robinson, K.L., and Taylor, G.J. (2014) Heterogeneous distribution of water in the Moon. Nature Geoscience, 7, 401–408.10.1038/ngeo2173Suche in Google Scholar

Sharp, Z.D., Atudorei, V., and Durakiewicz, T. (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and minerals. Chemical Geology, 178, 197–210.10.1016/S0009-2541(01)00262-5Suche in Google Scholar

Singer, J.A., Greenwood, J.P., Itoh, S., Sakamoto, N., and Yurimoto, H. (2017) Evidence for the solar wind in lunar magmas: A study of slowly cooled samples of the Apollo 12 olivine basalt suite. Geochemical Journal, 51, 95–104.10.2343/geochemj.2.0462Suche in Google Scholar

Stormer, J.C. Jr., Pierson, M.L., and Tacker, R.C. (1993) Variation of F and Cl X‑ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist, 78, 641–648.Suche in Google Scholar

Tartèse, R., and Anand, M. (2013) Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts. Earth and Planetary Science Letters, 361, 480–486.10.1016/j.epsl.2012.11.015Suche in Google Scholar

Tartèse, R., Anand, M., McCubbin, F.M., Elardo, S.M., Shearer, C.K., and Franchi, I.A. (2014) Apatite in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon. Geology, 42, 363–366.10.1130/G35288.1Suche in Google Scholar

Wolff, J.A., and Ramos, F.C. (2014) Processes in caldera-forming high-silica rhyolite magma: Rb-Sr and Pb isotope systematics of the Otowi member of the Bandelier Tuff, Valles Caldera, New Mexico, USA. Journal of Petrology, 55, 345–375.10.1093/petrology/egt070Suche in Google Scholar

Received: 2019-06-25
Accepted: 2019-10-01
Published Online: 2020-01-23
Published in Print: 2020-02-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. A method to estimate the pre-eruptive water content of basalts: Application to the Wudalianchi–Erkeshan–Keluo volcanic field, Northeastern China
  2. A new emerald occurrence from Kruta Balka, Western Peri-Azovian region, Ukraine: Implications for understanding the crystal chemistry of emerald
  3. Dissolution of poorly soluble uranyl phosphate phases in the Metaautunite Subgroup under uranyl peroxide cage cluster forming conditions
  4. Quartz crystals in Toba rhyolites show textures symptomatic of rapid crystallization
  5. Constraints on non-isothermal diffusion modeling: An experimental analysis and error assessment using halogen diffusion in melts
  6. Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula
  7. Partitioning of V and 19 other trace elements between rutile and silicate melt as a function of oxygen fugacity and melt composition: Implications for subduction zones
  8. Cl-bearing fluorcalciobritholite in high-Ti basalts from Apollo 11 and 17: Implications for volatile histories of late-stage lunar magmas
  9. Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: Implications for the role of amphibole fractionation during magma evolution
  10. Extraterrestrial, shock-formed, cage-like nanostructured carbonaceous materials
  11. Minerals Matter
  12. Pyrite: Fool’s gold records starvation of bacteria
  13. American Mineralogist thanks the 2019 reviewers
  14. Book Review
  15. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7180/html
Button zum nach oben scrollen