Startseite Sound wave velocities of Fe5Si at high-pressure and high-temperature conditions: Implications to lunar and planetary cores
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sound wave velocities of Fe5Si at high-pressure and high-temperature conditions: Implications to lunar and planetary cores

  • Liwei Deng EMAIL logo , Yoshio Kono und Guoyin Shen
Veröffentlicht/Copyright: 23. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Elastic properties of Fe alloys are critical in constraining the compositions of planetary bodies by comparing to the planetary observations. The sound wave velocities and density of an Fe5Si (9 wt% Si) alloy in body-centered cubic (bcc) structure were measured by combining an ultrasonic technique with synchrotron X‑ray radiography at pressure (P) and temperature (T) conditions of 2.6–7.5 GPa and 300–1173 K, respectively. At room temperature, it is observed that adding Si to bcc-Fe increases the compressional wave velocity (vP) but decreases the shear wave velocity (vS). At high temperatures, we observed a pronounced effect of pressure on the vS-T relations in the Fe5Si alloy. The vP-density (ρ) relationship of the Fe5Si alloy is found to follow the Birch’s law in the P-T range of this study, whereas the vS-ρ relation exhibits complex behavior. Implications of these results to the lunar core and the Mercurian core are discussed. Our results imply that adding Si to a pure Fe lunar core would be invisible in terms of vP, but exhibit a decreased vS. Including Si in a sulfur-rich lunar core would display an increased vP and a decreased ρ. Our density and sound wave velocity model provide lower and upper limit for a Si-bearing lunar core if 1–3 wt% Si content of enstatite chondrite is taken as compositional analog. A Si-rich (>9 wt%) Mercurian core model is derived to satisfy newly observed moment of inertia values by Messenger spacecraft.

  1. Funding This work was supported by the Major Program of National Natural Science Foundation of China (41490632), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000), and the National Natural Science Foundation of China (41374096, 41174071). This work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Labora-tory. G.S. and Y.K. acknowledge the support by DOE-BES, Division of Materials Sciences and Engineering under Award No. DEFG02-99ER45775. HPCAT operation is supported by DOE-NNSA under Award No. DE-NA0001974, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Sci-ence by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

References cited

Anderson, W.W., and Ahrens, T.J. (1994) An equation of state for liquid iron and implications for the Earth’s core. Journal of Geophysical Research, 99, 4273–4284.10.1029/93JB03158Suche in Google Scholar

Anderson, O.L., and Isaak, D.G. (2002) Another look at the core density deficit of Earth’s outer core. Physics of the Earth and Planetary Interiors, 131, 19–27.10.1016/S0031-9201(02)00017-1Suche in Google Scholar

Antonangeli, D., and Ohtani, E. (2015) Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models. Progress in Earth and Planetary Science, 2:3, 11 pages. DOI: 10.1186/s40645-015-0034-9Suche in Google Scholar

Antonangeli, D., Occelli, F., Requardt, H., Badro, J., Fiquet, G., and Krisch, M. (2004) Elastic anisotropy in textured hcp-iron to 112 GPa from sound velocity wave propagation measurements. Earth and Planetary Science Letters, 225, 243–251.10.1016/j.epsl.2004.06.004Suche in Google Scholar

Antonangeli, D., Siebert, J., Badro, J., Farber, D.L., Fiquet, Morard, G., and Ryerson, F.J. (2010) Composition of the Earth’s inner core from high pressure sound velocity measurements in Fe-Ni-Si alloys. Earth and Planetary Science Letters, 295, 292–296.10.1016/j.epsl.2010.04.018Suche in Google Scholar

Antonangeli, D., Morarda, G., Schmerr, N.C., Komabayashi, T., Krisch, M., Fiquet, G., and Fei, Y.W. (2015) Toward a mineral physics reference model for the Moon’s core. Proceedings of the National Academy of Sciences, 112, 3916–3919.10.1073/pnas.1417490112Suche in Google Scholar PubMed PubMed Central

Antonangeli, D., Morard, G., Paolasini, L., Garbarino, G., Murphy, C.A., Edmund, E., Decremps, F., Fiquet, G., Bosak, A., Mezouar, M., and Fei, Y.W. (2018) Sound velocities and density measurements of solid hcp-Fe and hcp-Fe–Si (9 wt.%) alloy at high pressure: Constraints on the Si abundance in the Earth’s inner core. Earth and Planetary Science Letters, 482, 446–453.10.1016/j.epsl.2017.11.043Suche in Google Scholar

Badro, J., Brodholt, J.P., Piet, H., Siebert, J., and Ryerson, F.J. (2015) Core formation and core composition from coupled geochemical and geophysical constraints. Proceeding of the National Academy of Sciences, 112, 12,310–12,314.10.1073/pnas.1505672112Suche in Google Scholar PubMed PubMed Central

Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., and d’Astuto, D. (2007) Effect of light elements on the sound velocities in solid iron: implications for the composition of Earth’s core. Earth and Planetary Science Letters, 254, 233–238.10.1016/j.epsl.2006.11.025Suche in Google Scholar

Balog, P.S., Secco, R.A., Rubie, D.C., and Frost, D.J. (2003) Equation of state of liquid Fe-10wt% S: Implications for the metallic cores of planetary bodies. Journal of Geophysical Research, 108, 2124.10.1029/2001JB001646Suche in Google Scholar

Birch, F. (1960) The velocity of compressional waves in rocks to 10 kilobars. Part 1. Journal of Geophysical Research, 65, 1083–1102.10.1029/SP026p0091Suche in Google Scholar

Brown, S., and Elkins-Tanton, L.T. (2009) Compositions of Mercury’s earliest crust from magma ocean models. Earth and Planetary Science Letters, 286, 446–455.10.1016/j.epsl.2009.07.010Suche in Google Scholar

Chabot, N.L., Wollack, E.A., Klima, R.L., and Minitti, M.E. (2014) Experimental constraints on Mercury’s core composition. Earth and Planetary Science Letters, 390, 199–208.10.1016/j.epsl.2014.01.004Suche in Google Scholar

Chigarev, N., Zinin, P., Ming, L.C., Amulele, G., Bulou, A., and Gusev, V. (2008) Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell. Applied Physics Letters, 93, 181905.10.1063/1.3013587Suche in Google Scholar

Corgne, A., Keshav, S., Wood, B.J., McDonough, W.F., and Fei, Y. (2008) Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochimica et Cosmochimica Acta, 72, 574–589.10.1016/j.gca.2007.10.006Suche in Google Scholar

Dauphas, N. (2017) The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521–524.10.1038/nature20830Suche in Google Scholar PubMed

Dubrovinsky, L., Dubrovinskaia, N., Narygina, O., Kantor, I., Kuznetzov, A., Prakapenka, V.B., Vitos, L., Johansson, B., Mikhaylushkin, A.S., Simak, S.I., and Abrikosov, I.A. (2007) Body-centered cubic iron-nickel alloy in Earth’s core. Science, 316, 1880–1883.10.1126/science.1142105Suche in Google Scholar PubMed

Fiquet, G., Badro, J., Guyot, F., Requardt, H., and Krisch, M. (2001) Sound velocities in iron to 110 gigapascals. Science, 291, 468–471.10.1126/science.291.5503.468Suche in Google Scholar PubMed

Fischer, R.A., Campbell, A.J., Reaman, D.M., Miller, N.A., Heinz, D.L., Dera, P.L., and Prakapenka, V.B. (2013) Phase relations in the Fe-FeSi system at high pressures and temperatures. Earth and Planetary Science Letters, 373, 54–64.10.1016/j.epsl.2013.04.035Suche in Google Scholar

Higo, Y., Kono, Y., Inoue, T., Irifune, T., and Funakoshi, K. (2009) A system for measuring elastic wave velocity under high pressure and high temperature using a combination of ultrasonic measurement and the multi-anvil apparatus at SPring-8. Journal of Synchrotron Radiation, 16, 762–768.10.1107/S0909049509034980Suche in Google Scholar PubMed

Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., Labrosse, S., Jambon, A., Agrinier. P., Davaille, A., and Jaupart, C. (2010) The chemical composition of the Earth: enstatite chondrite models. Earth and Planetary Science Letters, 293, 259–268.10.1016/j.epsl.2010.02.033Suche in Google Scholar

Jing, Z.C., Wang, Y.B., Kono, Y., Yu, T., Sakamaki, T., Park, C., Rivers, M.L., Sutton, S.R., and Shen, G.Y. (2014) Sound velocity of Fe-S liquids at high pressure: Implications for the Moon’s molten outer core. Earth and Planetary Science Letters, 396, 78–87.10.1016/j.epsl.2014.04.015Suche in Google Scholar

Jones, J.H., and Palme, H. (2000) Geochemical constraints on the origin of the Earth and Moon. In R.M. Camp and K. Righter, Eds., Origin of the Earth and Moon. University of Arizona Press, Tucson, pp. 197–216.10.2307/j.ctv1v7zdrp.17Suche in Google Scholar

Kantor, A.P., Kantor, I.Y., Kurnosov, A.V., Kuznetsov, A.Y., Kuznetsov, A.Y., Dubrovinskaia, N.A., Krisch, M., Bossak, A.A., Dmitriev, V.P., Urusov, V.S., and Dubrovinsky, L.S. (2007) Sound wave velocities of fcc Fe-Ni alloy at high pressure and temperature by mean of inelastic X‑ray scattering. Physics of the Earth and Planetary Interiors, 164, 83–89.10.1016/j.pepi.2007.06.006Suche in Google Scholar

Knibbe, J.S., and Westrenen, W.V. (2015) The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction. Journal of Geophysical Research: Planets, 120, 1904–1923, 10.1002/2015JE004908Suche in Google Scholar

Knibbe, J.S., and Westrenen, W.V. (2018) The thermal evolution of Mercury’s Fe–Si core. Earth and Planetary Science Letters, 482, 147–159.10.1016/j.epsl.2017.11.006Suche in Google Scholar

Komabayashi, T., and Fei, Y. (2010) Internally consistent thermodynamic database for iron to the Earth’s core conditions. Journal of Geophysical Research: Solid Earth, 115, B03202, 10.1029/2009JB006442Suche in Google Scholar

Kono, Y., Irifune, T., Higo, Y., Inoue, T., and Barnhoorn, A. (2010) P-V-T relation of MgO derived by simultaneous elastic wave velocity and in situ X‑ray measurements: A new pressure scale for the mantle transition region. Physics of the Earth and Planetary Interiors, 183, 196–211.10.1016/j.pepi.2010.03.010Suche in Google Scholar

Kono, Y., Park, C., Sakamaki, T., Kenny-Benson, C., Shen, G., and Wang, Y. (2012) Simultaneous structure and elastic wave velocity measurement of SiO2 glass at high pressures and high temperatures in a Paris-Edinburgh cell. The Review of Scientific Instruments, 83, 033905.10.1063/1.3698000Suche in Google Scholar PubMed

Konopliv, A.S., Binder, A.B., and Hood, L.L. (1998) Improved gravity field of the Moon from Lunar prospector. Science, 281, 1476–1480.10.1126/science.281.5382.1476Suche in Google Scholar PubMed

Kung, J., Rigden, S., and Gwanmesia, G. (2000) Elasticity of ScAlO3 at high pressure. Progress in Earth and Planetary Science, 118, 65–75.10.1016/S0031-9201(99)00128-4Suche in Google Scholar

Kuwayama, Y., and Hirose, K. (2004) Phase relations in the system Fe-FeSi at 21 GPa. American Mineralogist, 89, 273–276.10.2138/am-2004-2-303Suche in Google Scholar

Kuwayama, Y., Sawai, T., Hirose, K., Sata, N., and Ohishi, Y. (2009) Phase relations of iron-silicon alloys at high pressure and high temperature. Physics and Chemistry of Minerals, 36, 511–518.10.1007/s00269-009-0296-0Suche in Google Scholar

Li, B.S., and Liebermann, R.C. (2007) Indoor seismology by probing the Earth’s interior using sound wave velocity measurements at high pressure and high temperatures. Proceedings of the National Academy of Sciences, 10.1073/pnas.0608609104Suche in Google Scholar PubMed PubMed Central

Li, B.S., and Liebermann, R.C. (2014) Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Physics of the Earth and Planetary Interiors, 233, 135–153.10.1016/j.pepi.2014.05.006Suche in Google Scholar

Lin, J.F., Heinz, D.L., Campbell, A.J., Devine, J.M., and Shen, G.Y. (2002) Iron-silicon alloy in Earth’s core? Science, 295, 313–315.10.1126/science.1066932Suche in Google Scholar PubMed

Lin, J.F., Struzhkin, V.V., Sturhahn, W., Huang, E., Zhao, J., Hu, M.Y., Alp, E.E., Mao, H.K., Boctor, N., and Hemley, R.J. (2003a) Sound velocities of iron-nickel and iron-silicon alloys at high pressures. Geophysical Research Letters, 30, 10.1029/2003GL018405Suche in Google Scholar

Lin, J.F., Campbell, A.J., Heinz, D.L., and Shen, G.Y. (2003b) Static compression of iron-silicon alloys: Implications for silicon in the Earth’s core. Journal of Geophysical Research, 108(B1), 2045, 10.1029/2002JB001978Suche in Google Scholar

Lin, J.F., Sturhahn, W., Zhao, J., Shen, G., Mao, H.K., and Hemley, R.J. (2005) Sound velocities of hot dense iron: Birch’s law revisited. Science, 308, 1892–1894.10.1126/science.1111724Suche in Google Scholar PubMed

Lin, J.F., Scott, H.P., Fischer, R.A., Chang, Y.Y., Kantor, I., and Prakapenka, V.B. (2009) Phase relations of Fe-Si alloy in Earth’s core. Geophysical Research Letters, 36, L06306.10.1029/2008GL036990Suche in Google Scholar

Lin, Y.H., Tronche, E.J., Steenstra, E.S., and Westrenen, W.V. (2017) Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nature Geoscience, 10, 14–18.10.1038/ngeo2845Suche in Google Scholar

Liu, J., Lin, J.F., Alatas, A., and Bi, W.L. (2014) Sound velocities of bcc-Fe and Fe0.85Si0.15 alloy at high pressure and temperature. Physics of the Earth and Planetary Interiors, 233, 24–32.10.1016/j.pepi.2014.05.008Suche in Google Scholar

Lv, J.N., Sun, Y.S., Toksoz, M.N., Zheng, Y., and Zuber, M.T. (2011) Seismic effects of the Caloris basin impact, Mercury. Planetary and Space Science, 59(15), 1981–1991.10.1016/j.pss.2011.07.013Suche in Google Scholar

Malavergne, V., Toplis, M.J., Berthet, S., and Jones, J. (2010) Highly reducing conditions during core formation on Mercury: implications for internal structure and the origin of a magnetic field. Icarus, 206, 199–209.10.1016/j.icarus.2009.09.001Suche in Google Scholar

Mao, H.K., Xu, J., Struzhkin, V.V., Shu, J., Hemley, R.J., Sturhahn, W., Hu, M.Y., Alp, E.E., Vočadlo, L., Alfè, D., and others. (2001) Phonon density of states of iron up to 153 GPa. Science, 292, 914–916.10.1126/science.1057670Suche in Google Scholar

Mao, Z., Lin, J.F., Liu, J., Alatas, A., Gao, L., Zhao, J., and Mao, H.K. (2012) Sound velocities of Fe and Fe-Si alloy in the Earth’s core. Proceedings of the National Academy of Sciences, 109, 10239–10244.10.1073/pnas.1207086109Suche in Google Scholar

Mason, B. (1966) The enstatite chondrites. Geochimica et Cosmochimica Acta, 30, 23–39.10.1016/0016-7037(66)90089-5Suche in Google Scholar

Massalski, T.B. (1986) Binary Alloy Phase Diagrams. American Society for Metals, Metals Park, Ohio.Suche in Google Scholar

Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.E., Zuber, M.T., Smith, D.E., and Solomon, S.C. (2014) The gravity field, orientation, and ephemeris of Mercury from Messenger observations after three years in orbit. Journal of Geophysical Research, 119, 2417–2436, 10.1002/2014JE004675Suche in Google Scholar

McCoy, T., Dickinson, T.L., and Lofgren, G.E. (1999) Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735–746.10.1111/j.1945-5100.1999.tb01386.xSuche in Google Scholar

Qin, L., Alexander, C.M.D., Carlson, R.W., Horan, M.F., and Yokoyama, T. (2010) Contributors to chromium isotope variation of meteorites. Geochimica et Cosmochimica Acta, 74, 1122–1145.10.1016/j.gca.2009.11.005Suche in Google Scholar

Ricolleau, A., Fei, Y.W., Corgne, A., Siebert, J., and Badro, J. (2011) Oxygen and silicon contents of Earth’s core from high pressure metal–silicate partitioning experiments. Earth and Planetary Science Letters, 310, 409–421.10.1016/j.epsl.2011.08.004Suche in Google Scholar

Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Mezouar, M., and Martinez, I. (2000) Density measurements of liquid Fe-S alloys at high-pressure. Geophysical Research Letters, 27, 811–814.10.1029/1999GL008431Suche in Google Scholar

Shen, G.Y., and Mao, H.K. (2017) High-pressure studies with X‑rays using diamond anvil cells. Reports on Progress in Physics, 80, 016101.10.1088/1361-6633/80/1/016101Suche in Google Scholar PubMed

Shibazaki, Y., Nishida, K., Higo, Igarashi, M.M., Tahara, M., Sakamaki, T., Terasaki, H., Shimoyama, Y., Kuwabara, S., Takubo, Y., and Ohtani, E. (2016) Compressional and shear wave velocities for polycrystalline bcc-Fe up to 6.3 GPa and 800 K. American Mineralogist, 101, 1150–1160.10.2138/am-2016-5545Suche in Google Scholar

Stark, A., Oberst, J., Preusker, F., Peale, S.J., Margot, J.-L., Phillips, R.J., Neumann, G.A., Smith, D.E., Zuber, M.T., and Solomon, S.C. (2015) First Messenger orbital observations of Mercury’s librations. Geophysical Research Letters, 42(19),7881–7889.10.1002/2015GL065152Suche in Google Scholar

Tsuchiya, T. (2003) First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth’s mantle. Journal of Geophysical Research, 108(1), 75–84.Suche in Google Scholar

Urick, R.J. (1947) A sound velocity method for determining the compressibility of finely divided substances. Journal of Applied Physics, 18, 983–987.10.1063/1.1697584Suche in Google Scholar

Vocadlo, L., Wood, I.G., Gillan, M.J., Brodholt, J., Dobson, D.P., Price, G.D., Côté, D., Vocadlo, L., and Brodholt, J.P. (2008) The effect of silicon impurities on the phase diagram of iron and possible implications for the Earth’s core structure. Journal of Physics and Chemistry of Solids, 69, 2177–2181.10.1016/j.jpcs.2008.03.031Suche in Google Scholar

Wänke, H., and Dreibus, G. (1997) New evidence for silicon as the major light element in the Earth’s core. Lunar and Planetary Science Conference XXVIII, 1280.Suche in Google Scholar

Warren, P.H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93–100.10.1016/j.epsl.2011.08.047Suche in Google Scholar

Weber, R.C., Lin, P.Y., Garnero, E.J., Williams, Q., and Lognonne, P. (2011) Seismic detection of the lunar core. Science, 331, 309–312.10.1126/science.1199375Suche in Google Scholar PubMed

Whitaker, M.L., Liu, W., Liu, Q., Wang, L.P., and Li, B.S. (2009) Thermoelasticity of ε-FeSi to 8 GPa and 1273 K. American Mineralogist, 94, 1039–1044.10.2138/am.2009.3166Suche in Google Scholar

Wieczorek, M.A. (2006) The constitution and structure of the lunar interior. Reviews in Mineralogy and Geochemistry, 60, 221–364.10.1515/9781501509537-007Suche in Google Scholar

Williams, Q. (2009) Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564–569.10.1016/j.epsl.2009.05.019Suche in Google Scholar

Yamada, A., Wang, Y.B., Inoue, T., Yang, W.G., Park, C.Y., Yu, T., and Shen, G.Y. (2011) High-pressure X‑ray diffraction studies on the structure of liquid silicate using a Paris–Edinburgh type large volume press. Review of Scientific Instruments, 82, 015103.10.1063/1.3514087Suche in Google Scholar PubMed

Young, E.D., Kohl, I.E., Warren, P.H., Rubie, D.C., Jacobson, S.A., and Morbidelli, A. (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351, 493–496.10.1126/science.aad0525Suche in Google Scholar PubMed

Zhang, J., and Guyot, F. (1999) Thermal equation of state of iron and Fe0.91Si0.09 Physics and Chemistry of Minerals, 26, 206–211.10.1007/s002690050178Suche in Google Scholar

Zhang, J., Dauphas, N., Davis, A.M., Leya, I., and Fedkin, A. (2012) The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251–255.10.1038/ngeo1429Suche in Google Scholar

Received: 2018-03-23
Accepted: 2018-11-02
Published Online: 2019-01-23
Published in Print: 2019-02-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Special collection: Planetary processes as revealed by sulfides and chalcophile elements
  2. Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides, and platinum group minerals
  3. In situ measurements of lead and other trace elements in abyssal peridotite sulfides
  4. Special collection: Volatile elements in differentiated planetary interiors
  5. A terrestrial magmatic hibonite-grossite-vanadium assemblage: Desilication and extreme reduction in a volcanic plumbing system, Mount Carmel, Israel
  6. Special collection: Understanding of reaction and deformation microstructures
  7. Intragranular plasticity vs. grain boundary sliding (GBS) in forsterite: Microstructural evidence at high pressures (3.5–5.0 GPa)
  8. Articles
  9. Excess functions of chlorite solid solutions and neoformation of Fe-chlorites: Some implications of recent thermochemical measurements
  10. Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: Recording crystallization sequences in iron-rich layered intrusions
  11. Elasticity of single-crystal periclase at high pressure and temperature: The effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle
  12. Elastic plastic self-consistent (EPSC) modeling of San Carlos olivine deformed in a D-DIA apparatus
  13. Kinetics of antigorite dehydration: Rapid dehydration as a trigger for lower-plane seismicity in subduction zones
  14. Sound wave velocities of Fe5Si at high-pressure and high-temperature conditions: Implications to lunar and planetary cores
  15. Evidence for syngenetic micro-inclusions of As3+- and As5+-containing Cu sulfides in hydrothermal pyrite
  16. The oxidation state of sulfur in lunar apatite
  17. Reviewers 2018
  18. American Mineralogist thanks the 2018 reviewers
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2019-6564/html?lang=de
Button zum nach oben scrollen