Startseite Effect of composition on compressibility of skiagite-Fe-majorite garnet
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of composition on compressibility of skiagite-Fe-majorite garnet

  • Leyla Ismailova EMAIL logo , Maxim Bykov , Elena Bykova , Andrey Bobrov , Ilya Kupenko , Valerio Cerantola , Denis Vasiukov , Natalia Dubrovinskaia , Catherine McCammon , Michael Hanfland , Konstantin Glazyrin , Hanns-Peter Liermann , Alexander Chumakov und Leonid Dubrovinsky
Veröffentlicht/Copyright: 3. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Skiagite-Fe-majorite garnets were synthesized using a multianvil apparatus at 7.5–9.5 GPa and 1400–1600 K. Single-crystal X-ray diffraction at ambient conditions revealed that synthesized garnets contain 23 to 76% of an Fe-majorite component. We found that the substitution of Fe2+ and Si4+ for Fe3+ in the octahedral site decreases the unit-cell volume of garnet at ambient conditions. Analysis of single-crystal X-ray diffraction data collected on compression up to 90 GPa of garnets with different compositions reveals that with increasing majorite component the bulk modulus increases from 159(1) to 172(1) GPa. Our results and literature data unambiguously demonstrate that the total iron content and the Fe3+/Fe2+ ratio in (Mg, Fe)-majorites have a large influence on their elasticity. At pressures between 50 and 60 GPa we observed a significant deviation from a monotonic dependence of the molar volumes of skiagite-Fe-majorite garnet with pressure, and over a small pressure interval the volume dropped by about 3%. By combining results from single-crystal X-ray diffraction and high-pressure synchrotron Mössbauer source spectroscopy we demonstrate that these changes in the compressional behavior are associated with changes of the electronic state of Fe in the octahedral site.

Acknowledgments

We acknowledge the ESRF and DESY for provision of synchrotron radiation facilities. This study was partly supported by the Russian Foundation for Basic Research (project no. 16-05-00419).

References cited

Ahrens, T.J. (1995) Elastic constants of mantle minerals at high temperature. In O.L. Anderson and D.G. Isaak, Eds., Mineral Physics and Crystallography: A handbook of physical constants, p. 64–97. AGU Publications, Washington, D.C.Suche in Google Scholar

Akaogi, M., and Akimoto, S. (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12. Physics of the Earth and Planetary Interiors, 15, 90–106.10.1016/0031-9201(77)90013-9Suche in Google Scholar

Amthauer, G., Annersten, H., and Hafner, S.S. (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Zeitschrift für Kristallographie, 143, 14–55.10.1524/zkri.1976.143.jg.14Suche in Google Scholar

Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405–419.10.1515/zkri-2013-1711Suche in Google Scholar

Badro, J., Fiquet, G., Struzhkin, V.V., Somayazulu, M., Mao, H., Shen, G., and Le Bihan, T. (2002) Nature of the high-pressure transition in Fe2O3 hematite. Physical Review Letters, 89, 205504.10.1103/PhysRevLett.89.205504Suche in Google Scholar PubMed

Bengtson, A., Li, J., and Morgan, D. (2009) Mossbauer modeling to interpret the spin state of iron in (Mg, Fe)SiO3 perovskite. Geophysical Research Letters, 36, L15301.Suche in Google Scholar

Bobrov, A.V., Kojitani, H., Akaogi, M., and Litvin, Y.A. (2008) Phase relations on the diopside–jadeite–hedenbergite join up to 24 GPa and stability of Nabearing majoritic garnet. Geochimica et Cosmochimica Acta, 72, 2392–2408.10.1016/j.gca.2008.03.003Suche in Google Scholar

Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., and Dubrovinsky, L.S. (2013) Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 33, 534–545.10.1080/08957959.2013.833613Suche in Google Scholar

Bykova, E., Bobrov, A.V., Sirotkina, E.A., Bindi, L., Ovsyannikov, S.V., Dubrovin-sky, L.S., and Litvin, Y.A. (2014) X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16 GPa and 1,600 °C. Physics and Chemistry of Minerals, 41, 267–272.10.1007/s00269-013-0644-ySuche in Google Scholar

Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., Solopova, N., Chumakov, A., Pascarelli, S., and others. (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist, 100, 2670–2681.10.2138/am-2015-5319Suche in Google Scholar

Duffy, T.S., and Anderson, D.L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. Journal of Geophysical Research, 94, 1895.10.1029/JB094iB02p01895Suche in Google Scholar

Dymshits, A.M., Litasov, K.D., Shatskiy, A., Sharygin, I.S., Ohtani, E., Suzuki, A., Pokhilenko, N.P., and Funakoshi, K. (2014a) P-V-T equation of state of Na-majorite to 21 GPa and 1673 K. Physics of the Earth and Planetary Interiors, 227, 68–75.10.1016/j.pepi.2013.11.005Suche in Google Scholar

Dymshits, A.M., Litasov, K.D., Sharygin, I.S., Shatskiy, A., Ohtani, E., Suzuki, A., and Funakoshi, K. (2014b) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. Journal of Geophysical Research B: Solid Earth, 1–13.10.1002/2014JB011194Suche in Google Scholar

Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.10.1073/pnas.0609013104Suche in Google Scholar PubMed PubMed Central

Friedrich, A., Winkler, B., Morgenroth, W., Ruiz-Fuertes, J., Koch-Müller, M., Rhede, D., and Milman, V. (2014) Pressure-induced spin collapse of octahedrally coordinated Fe3+ in Ca3Fe2[SiO4]3. Physical Review B, 90, 094105.10.1103/PhysRevB.90.094105Suche in Google Scholar

Friedrich, A., Winkler, B., Morgenroth, W., Perlov, A., and Milman, V. (2015) Pressure-induced spin collapse of octahedrally coordinated Mn3+ in the tetragonal hydrogarnet henritermierite Ca3Mn2[SiO4]2[O4H4]. Physical Review B, 92, 014117.10.1103/PhysRevB.92.014117Suche in Google Scholar

Gwanmesia, G.D., Wang, L., Triplett, R., and Liebermann, R.C. (2009) Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnets solid solution measured by ultrasonic interferometry technique. Physics of the Earth and Planetary Interiors, 174, 105–112.10.1016/j.pepi.2008.07.029Suche in Google Scholar

Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., and Gasparik, T. (1994) Comparative compressibilities of majorite-type garnets. Physics and Chemistry of Minerals, 21, 344–349.10.1007/BF00202099Suche in Google Scholar

Heinemann, S., Sharp, T.G., and Seifert, F. (1997) The cubic-tetragonal phase transition in the system majorite and garnet symmetry in the Earth’s transition zone. Physics and Chemistry of Minerals, 24, 206–221.10.1007/s002690050034Suche in Google Scholar

Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Physical Review Letters, 106, 118501.10.1103/PhysRevLett.106.118501Suche in Google Scholar PubMed

Irifune, T., Higo, Y., Inoue, T., Kono, Y., Ohfuji, H., and Funakoshi, K. (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451, 814–817.10.1038/nature06551Suche in Google Scholar PubMed

Ismailova, L., Bobrov, A., Bykov, M., Bykova, E., Cerantola, V., Kupenko, I., McCammon, C., Dyadkin, V., Chernyshov, D., Pascarelli, S., and others. (2015) High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure. American Mineralogist, 100, 2650–2654.10.2138/am-2015-5278Suche in Google Scholar

Ita, J., and Stixrude, L. (1992) Petrology, elasticity, and composition of the mantle transition. Journal of Geophysical Research, 97(B5), 6849–6866.10.1029/92JB00068Suche in Google Scholar

Kantor, I., Dubrovinsky, L., and McCammon, C. (2006) Spin crossover in (Mg, Fe)O: A Mössbauer effect study with an alternative interpretation of X-ray emission spectroscopy data. Physical Review B, 73, 100101.10.1103/PhysRevB.73.100101Suche in Google Scholar

Kato, T. (1986) Stability relation of (Mg, Fe)SiO3 garnets, major constituents in the Earth’s interior. Earth and Planetary Science Letters, 77, 399–408.10.1016/0012-821X(86)90149-4Suche in Google Scholar

Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S., and Nicol, M. (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophysical Research Letters, 36, L23306.10.1029/2009GL039652Suche in Google Scholar

Li, B., and Liebermann, R.C. (2007) Indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proceedings of the National Academy of Sciences, 104(22), 9145–9150.10.1073/pnas.0608609104Suche in Google Scholar

Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K., Bednarčik, J., McBride, E.E., Petitgirard, S., Delitz J.T., Wendt, M., Bican, Y, and others. (2015) The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III. Journal of Synchrotron Radiation, 22, 1–17.10.1107/S1600577515005937Suche in Google Scholar

Liu, J., Chen, G., Gwanmesia, G.D., and Liebermann, R.C. (2000) Elastic wave velocities of a pyrope-majorite garnets (Py62Mj38 and Py50Maj50) to 9 GPa. Physics of the Earth and Planetary Interiors, 120, 153–163.10.1016/S0031-9201(00)00152-7Suche in Google Scholar

Luth, R.W., Virgo, D., Boyd, F.R., and Wood, B.J. (1990) Ferric iron in mantle-derived garnets. Implications for thermobarometry and for the oxidation state of the mantle, Contributions to Mineralogy and Petrology, 104, 56–72.10.1007/BF00310646Suche in Google Scholar

Matsubara, R., Toraya, H., Tanaka, S., and Sawamoto, H. (1990) Precision latticeparameter determination of (Mg, Fe)SiO3 tetragonal garnets. Science, 697–699.10.1126/science.247.4943.697Suche in Google Scholar PubMed

McCammon, C.A., and Ross, N.L. (2003) Crystal chemistry of ferric iron in (Mg, Fe)(Si, Al)O3 majorite with implications for the transition zone. Physics and Chemistry of Minerals, 30, 206–216.10.1007/s00269-003-0309-3Suche in Google Scholar

Merlini, M., and Hanfland, M. (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 33, 511–522.10.1080/08957959.2013.831088Suche in Google Scholar

Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L., and Strobel, P. (2010) Fe3+ spin transition in CaFe2O4 at high pressure. American Mineralogist, 95, 200–203.10.2138/am.2010.3347Suche in Google Scholar

Milman, V., Akhmatskaya, E.V., Nobes, R.H., Winkler, B., Pickard, C.J., and White, J.A. (2001) Systematic ab initio study of the compressibility of silicate garnets. Acta Crystallographica, B57, 163–177.10.1107/S0108768100018188Suche in Google Scholar

Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.10.1107/S0021889811038970Suche in Google Scholar

Novak, G.A., and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. American Mineralogist, 56, 791–825.Suche in Google Scholar

Ohtani, E., Kagawa, N., and Fujino, K. (1991) Stability of majorite (Mg, Fe)SiO3 at high pressures and 1800 °C. Earth and Planetary Science Letters, 102, 158–166.10.1016/0012-821X(91)90005-3Suche in Google Scholar

Oxford Diffraction (2006) CrysAlisPro. Oxford Diffraction Ltd., Abingdon, Oxfordshire, U.K.Suche in Google Scholar

Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar

Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329–331.10.1107/S0021889812004979Suche in Google Scholar

Ringwood, A.E. (1975) Composition and petrology of the Earth’s upper mantle.Suche in Google Scholar

Rüffer, R., and Chumakov, A.I. (1996) Nuclear Resonance Beamline at ESRF. Hyperfine Interactions, 97-98, 589–604.10.1007/BF02150199Suche in Google Scholar

Sinogeikin, S.V., and Bass, J.D. (2000) Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Physics of the Earth and Planetary Interiors, 120, 43–62.10.1016/S0031-9201(00)00143-6Suche in Google Scholar

—(2002) Elasticity of pyrope and majorite-pyrope solid solutions to high temperatures. Earth and Planetary Science Letters, 203, 549–555.10.1016/S0012-821X(02)00851-8Suche in Google Scholar

Sirotkina, E.A., Bobrov, A.V., Bindi, L., and Irifune, T. (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12-Mg3Cr2Si3O12 at 10-24 GPa and 1,600 °C. Contributions to Mineralogy and Petrology, 169, doi:10.1007/s00410-014-1097–0.10.1007/s00410-014-1097-0Suche in Google Scholar

Stan, C.V., Wang, J., Zouboulis, I.S., Prakapenka, V., and Duffy, T.S. (2015) High-pressure phase transition in Y3Fe5O12. Journal of Physics: Condensed Matter, 27, 405401.10.1088/0953-8984/27/40/405401Suche in Google Scholar

Tomioka, N., Fujino, K., Ito, E., Katsura, T., Sharp, T.G., and Kato, T. (2002) Microstructures and structural phase transition in (Mg, Fe)SiO3 majorite. European Journal of Mineralogy, 14, 7–14.10.1127/0935-1221/2002/0014-0007Suche in Google Scholar

Wood, B.J., Pawley, A., and Frost, D. (1996) Water and carbon in the Earth’s mantle. Philosophical Transactions of the Royal Society of London, 354, 1495–1511.10.1098/rsta.1996.0060Suche in Google Scholar

Wood, B.J., Kiseeva, E.S., and Matzen, A.K. (2013) Garnet in the Earth’s mantle. Elements, 9, 421–426.10.2113/gselements.9.6.421Suche in Google Scholar

Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 295–310.10.1016/S0012-821X(03)00379-0Suche in Google Scholar

Woodland, A.B., and Ross, C.R. (1994) A crystallographic and Mössbauer spec-troscopy study of Fe3Al2Si3O12-Fe32+Fe23+ Si3O12 and Ca3Fe32+ Si3O12. Physics and Chemistry of Minerals, 21, 117–132.10.1007/BF00203142Suche in Google Scholar

Woodland, A.B., Angel, R.J., Koch, M., Kunz, M., and Miletich, R. (1999) Equations of state for Fe3Fe2Si3O12 and Fe2SiO4-Fe3O4 spinel solid solutions. Journal of Geophysical Research, 104, 20049–20058.10.1029/1999JB900206Suche in Google Scholar

Woodland, A.B., Bauer, M., Boffa Ballaran, T., and Hanrahan, M. (2009) Crystal chemistry of Fe32+ Cr2Si3O12-Fe32+Fe23+ Si3O12 garnet solid solutions and related spinels. American Mineralogist, 94, 359–366.10.2138/am.2009.3040Suche in Google Scholar

Xu, W., Greenberg, E., Rozenberg, G.K., Pasternak, M.P., Bykova, E., Boffa-Ballaran, T., Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekilova, O.Y., and others. (2013) Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide. Physical Review Letters, 111, 175501.10.1103/PhysRevLett.111.175501Suche in Google Scholar PubMed

Received: 2016-5-16
Accepted: 2016-8-29
Published Online: 2017-1-3
Published in Print: 2017-1-1

© 2017 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. Periodic activity in continental magmatic arcs
  3. Highlights and Breakthroughs
  4. Early warning signs for mining accidents: Detecting crackling noise
  5. Review
  6. Fluids and trace element transport in subduction zones
  7. Solved: The enigma of labradorite feldspar with incommensurately modulated structure
  8. Solved: The enigma of labradorite feldspar with incommensurately modulated structure
  9. Special Collection: Earth Analogs for Martian Geological Materials and Processes
  10. Formation of the ferruginous smectite SWa-1 by alteration of soil clays
  11. Special Collection: Advances in Ultrahigh-Pressure Metamorphism
  12. Dissolving dolomite in a stable UHP mineral assemblage: Evidence from Cal-Dol marbles of the Dora-Maira Massif (Italian Western Alps)
  13. Special collection: Apatite: a common mineral, uncommonly versatile
  14. Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50–200 MPa and 700–1000 °C
  15. Special collection: Apatite: a common mineral, uncommonly versatile
  16. Apatite trace element and isotope applications to petrogenesis and provenance
  17. Special collection: Apatite: a common mineral, uncommonly versatile
  18. Raman and IR studies of the effect of Fe substitution in hydroxyapatites and deuterated hydroxyapatite
  19. Building Planets: The Dynamics and Geochemistry of Core Formation
  20. Carbon as the dominant light element in the lunar core
  21. Special collection: Olivine
  22. Formation of phosphorus-rich olivine in Dar al Gani 978 carbonaceous chondrite through fluid-assisted metamorphism
  23. Cobalt mineral ecology
  24. Deprotonation of Fe-dominant amphiboles: Single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite
  25. The replacement of a carbonate rock by fluorite: Kinetics and microstructure
  26. An experimental kinetic study on the structural evolution of natural carbonaceous material to graphite
  27. Infrared spectra of carbonate apatites: Evidence for a connection between bone mineral and body fluids
  28. Experimental investigation into the substitution mechanisms and solubility of Ti in garnet
  29. XAFS spectroscopic study of Ti coordination in garnet
  30. Effect of composition on compressibility of skiagite-Fe-majorite garnet
  31. An integrated EPMA-EBSD study of metamorphic histories recorded in garnet
  32. A new formula and crystal structure for nickelskutterudite, (Ni,Co,Fe)As3, and occupancy of the icosahedral cation site in the skutterudite group
  33. Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure
  34. Plastic deformation and post-deformation annealing in chromite: Mechanisms and implications
  35. Letter
  36. Bridgmanite-like crystal structure in the novel Ti-rich phase synthesized at transition zone condition
  37. Book Review
  38. Book Review: Geophysical Data Analysis: Discrete Inverse Theory (MATLAB Edition), Third edition
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2017-5856/html
Button zum nach oben scrollen