Home The Second Conference on the Lunar Highlands Crust and New Directions. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples with crystallization experiments and remote sensing
Article
Licensed
Unlicensed Requires Authentication

The Second Conference on the Lunar Highlands Crust and New Directions. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples with crystallization experiments and remote sensing

  • Juliane Gross EMAIL logo , Peter J. Isaacson , Allan H. Treiman , Loan Le and Julia K. Gorman
Published/Copyright: October 14, 2014
Become an author with De Gruyter Brill

Abstract

Mg-Al spinel is rare in lunar rocks (Apollo and meteorite collections), and occurs mostly in troctolites and troctolitic cataclastites. Recently, a new lunar lithology, rich in spinel and plagioclase, and lacking abundant olivine and pyroxene, was recognized in visible to near-infrared (VNIR) reflectance spectra by the Moon Mineralogy Mapper (M3) instrument on the Chandrayaan-1 spacecraft at the Moscoviense basin. These outcrop-scale areas are inferred to contain 20-30% Mg-Al spinel. Possible explanations for the petrogenesis of spinel-bearing and spinel-rich lithology(s) range from low-pressure near-surface crystallization to a deep-seated origin in the lower lunar crust or upper mantle. Here, we describe 1-bar crystallization experiments conducted on rock compositions rich in olivine and plagioclase that crystallize spinel. This would be equivalent to impact-melting, which is moderately common among lunar plutonic rocks and granulites. To explore possible precursor materials and the maximum amount of spinel that could be crystallized, a lunar troctolitic composition similar to Apollo pink spinel troctolite 65785, and a composition similar to ALHA81005 as analog to the source region of this meteorite have been chosen. The crystallization experiments on the composition of AHLA 81005 did not yield any spinel; experiments on the composition similar to Apollo 65785 crystallized a maximum of ~8 wt% spinel, much less than the suggested 20-30% spinel of the new lithology detected by M3. However, our VNIR spectral reflectance analyses of the experimental run products indicate that the spinel composition of the experimental run products not only appears to be similar to the composition of the spinel lithology detected by M3 (characteristics of the spinel absorption), but also that the modal abundances of coexisting phases (e.g., mafic glass) influence the spectral reflectance properties. Thus, the spinel-rich deposits detected by M3 might not be as spinel-rich as previously thought and could contain as little as 4-5 wt% spinel. However, the effect of space weathering on spinel is unknown and could significantly weaken its 2 μm absorptions. If this occurs, weathered lunar rocks could contain more spinel than a comparison with our unweathered experimental charges would suggest.

Received: 2013-10-19
Accepted: 2014-4-24
Published Online: 2014-10-14
Published in Print: 2014-10-1

© 2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs. Pauling’s rules, in a world of non-spherical atoms
  2. Highlights and Breakthroughs. Theoretical and applied implications of the structural order of irradiated vermiculite
  3. Highlights and Breakthroughs. An examination of the Ti-in-quartz thermobarometer in rocks that contain dynamically recrystallized quartz: Re-equilibration of [Ti] during recrystallization
  4. The Second Conference on the Lunar Highlands Crust and New Directions. Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditions
  5. The Second Conference on the Lunar Highlands Crust and New Directions. VNIR spectral variability of the igneous stratified Stillwater Complex: A tool to map lunar highlands
  6. The Second Conference on the Lunar Highlands Crust and New Directions. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples with crystallization experiments and remote sensing
  7. The Second Conference on the Lunar Highlands Crust and New Directions. Phosphate-halogen metasomatism of lunar granulite 79215: Impact-induced fractionation of volatiles and incompatible elements
  8. The Second Conference on the Lunar Highlands Crust and New Directions. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely
  9. The Second Conference on the Lunar Highlands Crust and New Directions. The distribution of Mg-spinel across the Moon and constraints on crustal origin
  10. The occurrence and composition of chevkinite-(Ce) and perrierite-(Ce) in tholeiitic intrusive rocks and lunar mare basalt
  11. Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic
  12. Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectra
  13. Time-resolved synchrotron X-ray diffraction study of the dehydration behavior of chalcophanite
  14. Ab initio investigations of dioctahedral interlayer-deficient mica: Modeling particles of illite found within gas shale
  15. Trona at extreme conditions: A pollutant-sequestering material at high pressures and low temperatures
  16. In-situ U-Th/Pb geochronology of (urano)thorite
  17. Temperature-induced amorphization of Na-zeolite A: A view from multi-nuclear high-resolution solid-state NMR
  18. “Silicified” pyrochlore from nepheline syenite (mariupolite) of the Mariupol Massif, SE Ukraine: A new insight into the role of silicon in the pyrochlore structure
  19. Physio-chemical properties of gamma-irradiated vermiculite and their significance for radiation protection and thermoluminescence
  20. Ti resetting in quartz during dynamic recrystallization: Mechanisms and significance
  21. Thermodynamic study of monoclinic pyrrhotite in equilibrium with pyrite in the Ag-Fe-S system by solid-state electrochemical cell technique
  22. Phase diagram and P-V-T equation of state of Al-bearing seifertite at lowermost mantle conditions
  23. Crystal structure of Guinier-Preston zones in orthopyroxene: Z-contrast imaging and ab inito study
  24. Crystal chemistry and surface configurations of two polylithionite-1M crystals
  25. Crystal chemistry of synthetic Ti-Mg-bearing hibonites: A single-crystal X-ray study
  26. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule
  27. Agakhanovite-(Y), ideally (YCa)⃞2KBe3Si12O30, a new milarite-group mineral from the Heftetjern pegmatite, Tørdal, Southern Norway: Description and crystal structure
  28. Actinides in Geology, Energy, and the Environment. Ichnusaite, Th(MoO4)2·3H2O, the first natural thorium molybdate: Occurrence, description, and crystal structure
  29. Actinides in Geology, Energy, and the Environment. Quantification of α-particle radiation damage in zircon
  30. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite
  31. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars
  32. What Lurks in the martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Gypsum in modern Kamchatka volcanic hot springs and the Lower Cambrian black shale: Applied to the microbial-mediated precipitation of sulfates on Mars
  33. Letter. Identification of hydrogen defects linked to boron substitution in synthetic forsterite and natural olivine
  34. Letter. Densified glasses as structural proxies for high-pressure melts: Configurational compressibility of silicate melts retained in quenched and decompressed glasses
  35. Letter. Geobarometry from host-inclusion systems: The role of elastic relaxation
  36. New Mineral Names
  37. Book Review
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2014-4780/html
Scroll to top button