Home A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale
Article
Licensed
Unlicensed Requires Authentication

A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale

  • Laurence Lemelle EMAIL logo , Alexandre Simionovici , Robert Truche , Christophe Rau , Marina Chukalina and Philippe Gillet
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

The combination of synchrotron-based X-ray absorption and fluorescence computed tomographies (CT) is a new method allowing a noninvasive and nondestructive determination of the three-dimensional (3D) mineralogy with micrometer resolution of sub-millimeter silicate grains, possibly stored in a silica holder. These CT were performed with beams of a few tens of keV from a third-generation synchrotron source on one olivine grain of the NWA817 Martian meteorite presenting a reddish alteration phase. The reconstructed sections show a network of fractures and a few micrometer-thick layers formed on one grain. The 3D facet orientation and the X-ray attenuation coefficient indicate that this grain is an Fo44±9 olivine crystal. The fluorescence section reveals rims enriched in Fe (a major element) or depleted in Ca (a minor element). This CT combination shows that the micrometer-thick layer is preferentially formed on the (010) olivine face and has a lower density (3.5 ± 0.4 g/cm3 ) than the olivine, even though it is enriched in Fe. Its complex nano-petrography and the distributions of nanometer-sized voids and fractures in such a micrometer thick layer, first observed by scanning electron microscopy on focused ion-beam cuts, is not shown by CT. The precision presently achieved, although moderate, is sufficient to obtain a 3D semi-quantitative view of the mineralogy consistent with the one previously established by electron probe microanalyses (Sautter et al. 2002).

Received: 2003-6-12
Accepted: 2003-11-24
Published Online: 2015-3-28
Published in Print: 2004-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. A zero-damage model for fission-track annealing in zircon
  2. Unoccupied states of pyrite probed by electron energy-loss spectroscopy (EELS)
  3. Tugtupite: High-temperature structures obtained from in situ synchrotron diffraction and Rietveld refinements
  4. SIMS microanalyses for Au in silicates
  5. Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend
  6. An X-ray and electron microprobe study of Fe, Ni, Ga, and Ge distribution and local structure in a section of the Canyon Diablo iron meteorite
  7. Mineralogical approaches to fundamental crystal dissolution kinetics
  8. Cu L3X-ray absorption spectroscopy and the electronic structure of minerals: Spectral variations in non-stoichiometric bornites, Cu5FeS4
  9. A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale
  10. Dissolution rates and pit morphologies of rhombohedral carbonate minerals
  11. The effect of TiO2on Pd, Ni, and Fe solubilities in silicate melts
  12. X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments
  13. A survey of hydrous species and concentrations in igneous feldspars
  14. Structure and crystallization behavior of the (Ba,Sr)HAsO4·H2O solid-solution in aqueous environments
  15. The crystal structure of painite CaZrB[Al9O18] revisited
  16. Model pyroxenes II: Structural variation as a function of tetrahedral rotation
  17. Mn-rich fluorapatite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations
  18. Isothermal equation of state and compressional behavior of tetragonal edingtonite
  19. Synthesis and crystal-chemistry of Na(NaMg)Mg5Si8O22(OH)2, a P21/m amphibole
  20. A single-crystal study on the pressure behavior of phlogopite and petrological implications
  21. Quantitative electron microprobe analysis of Fe3+/ΣFe: Basic concepts and experimental protocol for glasses
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-0409/html
Scroll to top button