Home Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend
Article
Licensed
Unlicensed Requires Authentication

Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend

  • Petr Černý EMAIL logo , Ron Chapman , Karen Ferreira and Sten-Anders Smeds
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

The complex, petalite-subtype Varuträsk pegmatite in the Proterozoic rocks of northern Sweden is, as a whole, rather poor in Nb and Ta. The pegmatite consolidated in eight units, but the (Nb,Ta)-oxide minerals attained saturation levels only in a late albite + lepidolite-bearing unit under conditions of high activity of alkali fluorides. Consequently, the compositional trends of columbite-group minerals and cassiterite mimic those typically displayed in pegmatites of the lepidolite subtype: from ferroan manganocolumbite [with Mn/(Mn + Fe)(at.) of 0.35 and Ta/(Ta + Nb) of 0.08] through near-endmember manganocolumbite (0.95 and 0.20, respectively) to Fe-depleted manganotantalite (0.99 and 0.55, respectively), and from (Fe >> Mn, Nb > Ta)-bearing to (Mn > Fe, Ta > Nb)-enriched cassiterite. To date, rare occurrences of cassiterite with Mn > Fe are restricted solely to the lepidolite-enriched granitic pegmatites. The degree of cation order in the Varuträsk columbite-group minerals increases from early to late phases, and with decreasing amounts of heterovalent substitutions. Slower cooling of initially disordered structures in late phases, or their diminished compositional complexity may be responsible for the higher degree of order. Rare primary microinclusions of cassiterite in columbitegroup minerals show consistent and systematic preference for Ta and Fe, suggesting an approach to chemical equilibrium, but columbite-group inclusions in cassiterite show in part a compositional scatter. In contrast, rare inclusions of ferrotapiolite and wodginite closely reflect the (Fe,Mn,Ta,Nb) compositional features of the host cassiterite. Stibiotantalite shows high values of Ta/(Ta + Nb) and mere traces of Bi, reflecting the relative abundance of native antimony and stibarsen in the pegmatite, and the absence of Bi-bearing minerals. Rare primary microlite is Ta- and F-rich, whereas the more widespread pyrochlore-microlite metasomatic after columbite-group minerals reflects the Ta/(Ta + Nb) values of the precursors, as does the stibiomicrolite replacing stibiotantalite. Cesium is elevated in several grains of primary and metasomatic pyrochlore-group phases that also are enriched in Sb, but not in stibiomicrolite. The array of large cations in pyrochlore-microlite metasomatic after columbite-group minerals is quite different from that typical of stibiomicrolite, suggestive of differences in the nature of the parent fluids. The lepidolite-subtype signature of the columbite-group minerals and cassiterite in the petalite-subtype Varuträsk pegmatite emphasizes the importance of specific conditions controlling stabilization of these minerals. The restriction of the columbite-group minerals to a very late lepidoliterich unit imposes a lepidolite-subtype signature on the whole petalite-subtype pegmatite, a signature grossly different from the characteristics typical of petalite-subtype pegmatites elsewhere.

Received: 2003-1-27
Accepted: 2003-9-21
Published Online: 2015-3-28
Published in Print: 2004-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. A zero-damage model for fission-track annealing in zircon
  2. Unoccupied states of pyrite probed by electron energy-loss spectroscopy (EELS)
  3. Tugtupite: High-temperature structures obtained from in situ synchrotron diffraction and Rietveld refinements
  4. SIMS microanalyses for Au in silicates
  5. Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend
  6. An X-ray and electron microprobe study of Fe, Ni, Ga, and Ge distribution and local structure in a section of the Canyon Diablo iron meteorite
  7. Mineralogical approaches to fundamental crystal dissolution kinetics
  8. Cu L3X-ray absorption spectroscopy and the electronic structure of minerals: Spectral variations in non-stoichiometric bornites, Cu5FeS4
  9. A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale
  10. Dissolution rates and pit morphologies of rhombohedral carbonate minerals
  11. The effect of TiO2on Pd, Ni, and Fe solubilities in silicate melts
  12. X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments
  13. A survey of hydrous species and concentrations in igneous feldspars
  14. Structure and crystallization behavior of the (Ba,Sr)HAsO4·H2O solid-solution in aqueous environments
  15. The crystal structure of painite CaZrB[Al9O18] revisited
  16. Model pyroxenes II: Structural variation as a function of tetrahedral rotation
  17. Mn-rich fluorapatite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations
  18. Isothermal equation of state and compressional behavior of tetragonal edingtonite
  19. Synthesis and crystal-chemistry of Na(NaMg)Mg5Si8O22(OH)2, a P21/m amphibole
  20. A single-crystal study on the pressure behavior of phlogopite and petrological implications
  21. Quantitative electron microprobe analysis of Fe3+/ΣFe: Basic concepts and experimental protocol for glasses
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-0405/html
Scroll to top button