Home Unoccupied states of pyrite probed by electron energy-loss spectroscopy (EELS)
Article
Licensed
Unlicensed Requires Authentication

Unoccupied states of pyrite probed by electron energy-loss spectroscopy (EELS)

  • Laurence A.J. Garvie EMAIL logo and Peter R. Buseck
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

Electron energy-loss spectra (EELS) of pyrite (FeS2) were acquired and include the Fe K, L2,3, M2,3, and M1 edges, and the S K, L2,3, and L1 edges. The core-loss edges exhibit a range of shapes and different theories are required to understand the spectra. In the process a clear picture of the conduction-band states as a function of energy above the band gap is obtained. This analysis reveals the extent of mixing of unoccupied states and thus provides an understanding of the limits of interpreting core-loss edges in light of the optical dipole limit. A unified picture of the unoccupied states is obtained by aligning the spectra on a common energy scale relative to the published Bremsstrahlung isochromat spectrum (BIS) and with the results of band structure calculations. This alignment allows similarities between the spectra of different atoms to be related to mixing of local conduction-band states. The coincidence of the Fe K and S L2,3 spectral features attests to the strong hybridization of the Fe p-S 3d states. The main Fe L2,3 edges are followed by structures that confirm an Fe-S bond with a substantial degree of mixing between Fe d6 and d7 states. The aligned EELS spectra clearly divide the unoccupied states into two regions. The first region is dominated by the intense d-like component of the Fe L3 edge and p-like components of the S K and L1 edges. A small pre-peak at the Fe K edge aligned with the Fe L2,3 edge peak maximum is indicative of Fe 4p + 3d eg and S 3p mixing. Similarly, the pre-peak to the S L2,3 edge arises from transitions to states with mixed S s + p + Fe 3d eg character.

Received: 2002-7-19
Accepted: 2003-9-25
Published Online: 2015-3-28
Published in Print: 2004-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. A zero-damage model for fission-track annealing in zircon
  2. Unoccupied states of pyrite probed by electron energy-loss spectroscopy (EELS)
  3. Tugtupite: High-temperature structures obtained from in situ synchrotron diffraction and Rietveld refinements
  4. SIMS microanalyses for Au in silicates
  5. Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend
  6. An X-ray and electron microprobe study of Fe, Ni, Ga, and Ge distribution and local structure in a section of the Canyon Diablo iron meteorite
  7. Mineralogical approaches to fundamental crystal dissolution kinetics
  8. Cu L3X-ray absorption spectroscopy and the electronic structure of minerals: Spectral variations in non-stoichiometric bornites, Cu5FeS4
  9. A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale
  10. Dissolution rates and pit morphologies of rhombohedral carbonate minerals
  11. The effect of TiO2on Pd, Ni, and Fe solubilities in silicate melts
  12. X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments
  13. A survey of hydrous species and concentrations in igneous feldspars
  14. Structure and crystallization behavior of the (Ba,Sr)HAsO4·H2O solid-solution in aqueous environments
  15. The crystal structure of painite CaZrB[Al9O18] revisited
  16. Model pyroxenes II: Structural variation as a function of tetrahedral rotation
  17. Mn-rich fluorapatite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations
  18. Isothermal equation of state and compressional behavior of tetragonal edingtonite
  19. Synthesis and crystal-chemistry of Na(NaMg)Mg5Si8O22(OH)2, a P21/m amphibole
  20. A single-crystal study on the pressure behavior of phlogopite and petrological implications
  21. Quantitative electron microprobe analysis of Fe3+/ΣFe: Basic concepts and experimental protocol for glasses
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-0402/html
Scroll to top button