Startseite Graphical analysis of the orthopyroxene-pigeonite-augite-plagioclase equilibrium at liquidus temperatures and low pressure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Graphical analysis of the orthopyroxene-pigeonite-augite-plagioclase equilibrium at liquidus temperatures and low pressure

  • Rais M. Latypov EMAIL logo , Michail I. Dubrovskii und Tuomo T. Alapieti
Veröffentlicht/Copyright: 26. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

There are both natural and experimental observations of the coexistence of three pyroxenes- orthopyroxene (Opx) + pigeonite (Pig) + augite (Aug)-with plagioclase (Pl). Commonly, the assemblage occurs as an intermediate product in the following fractionation trend of a mafic magma: Opx + Aug + Pl → Opx + Aug + Pig + Pl → Aug + Pig + Pl. To clarify the phase-equilibria constraints on the existence of this mineral assemblage, we have graphically analyzed the change in topology of an isobaric-isoplethic section, Ol-Aug-Pl-Qtz [with fe = 25-50%, where fe = Fe/(Fe + Mg), and An = 50%], arising from an increase in the fe-value of silicate liquid. The analysis shows that the stability field of the mineral assemblage Opx + Aug + Pig + Pl is restricted, and can only crystallize in the interval between two invariant points-T14 (Ol + Opx + Pig + Aug + Pl + L) and T24 (Qtz + Opx + Pig + Aug + Pl + L)-that emerge successively during expansion of a liquidus volume of pigeonite within the isobaric-isoplethic section Ol-Aug-Pl-Qtz. At fe-values lower than T14, the 3- pyroxene assemblage cannot exist due to the absence of a contact surface between the primary volumes of plagioclase and pigeonite. At fe-values greater than T24, the assemblage is unstable due to separation of the primary volumes of orthopyroxene and augite.

Received: 2000-4-26
Accepted: 2000-12-12
Published Online: 2015-3-26
Published in Print: 2001-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle
  2. Biodurability of talc
  3. Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation
  4. In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms
  5. Na- and Cs-exchange in a clinoptilolite-rich rock: Analysis of the outgoing cations in solution
  6. The effects of time, temperature, and concentration on Sr2+ exchange in clinoptilolite in aqueous solutions
  7. Thermodynamics of ion-exchanged and natural clinoptilolite
  8. Thermochemical study of calcium zeolites–heulandite and stilbite
  9. Fe3+/ΣFe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe
  10. Fibrous nanoinclusions in massive rose quartz: The origin of rose coloration
  11. Cathodoluminescence study of apatite crystals
  12. Hydrogen in spessartine-almandine garnets as a tracer of granitic pegmatite evolution
  13. Ab initio studies of possible fluorine-bearing four- and fivefold coordinated Al species in aluminosilicate glasses
  14. The nature of radiohaloes in biotite: Experimental studies and modeling
  15. Boron metasomatism of the Alta stock contact aureole, Utah: Evidence from borates, mineral chemistry, and geochemistry
  16. Low P-T Caledonian resetting of U-rich Paleoproterozoic zircons, central Sweden
  17. Graphical analysis of the orthopyroxene-pigeonite-augite-plagioclase equilibrium at liquidus temperatures and low pressure
  18. Synthesis and characterization of white micas in the join muscovite–aluminoceladonite
  19. Displacive components of the low-temperature phase transitions in lawsonite
  20. Radiographic study on the viscosity of the Fe-FeS melts at the pressure of 5 to 7 GPa
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2001-0417/html
Button zum nach oben scrollen