Startseite Thermodynamics of ion-exchanged and natural clinoptilolite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamics of ion-exchanged and natural clinoptilolite

  • Sanyuan Yang EMAIL logo , Alexandra Navrotsky und Rick Wilkin
Veröffentlicht/Copyright: 26. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Natural clinoptilolite (Cpt: Na0.085K0.037Ca0.010Mg0.020Al0.182Si0.818O2 ·0.528H2O) from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all the clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 °C. The energetic stabilization effect of hydration on each clinoptilolite can be largely correlated to its hydration capacity. The higher the average ionic potential of the extra-framework cations, the larger the hydration capacity of the clinoptilolite. This trend may be attributed to the small size as well as the efficient water-cation packing of high field strength cations in the zeolite structure. The hydration properties of these clinoptilolites are compared with those previously reported in the literature. The dehydration conditions as well as the measurement direction (dehydration of the initially hydrated sample or rehydration of the dehydrated zeolites) are important factors to control to obtain consistent thermodynamic properties for hydration.

The standard enthalpy for formation of the clinoptilolites from the constituent elements at 25 °C based on two framework O atoms was obtained from the calorimetric data: -1117.57 ± 0.95 kJ/mol Cpt, -1130.05 ± 1.00 kJ/mol Na-Cpt, -1109.49 ± 1.04 kJ/mol NaK-Cpt, -1094.21 ± 1.12 kJ/mol KCpt, and -1153.78 ± 1.07 kJ/mol Ca-Cpt. Their molar entropy was determined by a summation method based on the thermodynamic properties of the component oxides. Thus the standard free energy based on two framework O atoms was derived: -1034.01 ± 1.05 kJ/mol Cpt, -1044.19 ± 1.10 kJ/mol Na-Cpt, -1027.26 ± 1.13 kJ/mol NaK-Cpt, -1014.89 ± 1.21 kJ/mol K-Cpt, and -1064.95 ± 1.16 kJ/mol Ca-Cpt.

Received: 2000-5-15
Accepted: 2000-12-7
Published Online: 2015-3-26
Published in Print: 2001-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle
  2. Biodurability of talc
  3. Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation
  4. In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms
  5. Na- and Cs-exchange in a clinoptilolite-rich rock: Analysis of the outgoing cations in solution
  6. The effects of time, temperature, and concentration on Sr2+ exchange in clinoptilolite in aqueous solutions
  7. Thermodynamics of ion-exchanged and natural clinoptilolite
  8. Thermochemical study of calcium zeolites–heulandite and stilbite
  9. Fe3+/ΣFe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe
  10. Fibrous nanoinclusions in massive rose quartz: The origin of rose coloration
  11. Cathodoluminescence study of apatite crystals
  12. Hydrogen in spessartine-almandine garnets as a tracer of granitic pegmatite evolution
  13. Ab initio studies of possible fluorine-bearing four- and fivefold coordinated Al species in aluminosilicate glasses
  14. The nature of radiohaloes in biotite: Experimental studies and modeling
  15. Boron metasomatism of the Alta stock contact aureole, Utah: Evidence from borates, mineral chemistry, and geochemistry
  16. Low P-T Caledonian resetting of U-rich Paleoproterozoic zircons, central Sweden
  17. Graphical analysis of the orthopyroxene-pigeonite-augite-plagioclase equilibrium at liquidus temperatures and low pressure
  18. Synthesis and characterization of white micas in the join muscovite–aluminoceladonite
  19. Displacive components of the low-temperature phase transitions in lawsonite
  20. Radiographic study on the viscosity of the Fe-FeS melts at the pressure of 5 to 7 GPa
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2001-0407/html
Button zum nach oben scrollen