Home Suredaite, PbSnS3, a new mineral species, from the Pirquitas Ag-Sn deposit, NW-Argentina: mineralogy and crystal structure
Article
Licensed
Unlicensed Requires Authentication

Suredaite, PbSnS3, a new mineral species, from the Pirquitas Ag-Sn deposit, NW-Argentina: mineralogy and crystal structure

  • Werner H. Paar EMAIL logo , Ronald Miletich , Dan Topa , Alan J. Criddle , Milka K. De Brodtkorb , Georg Amthauer and Gerold Tippelt
Published/Copyright: March 26, 2015
Become an author with De Gruyter Brill

Abstract

Suredaite, ideally PbSnS3, is a new mineral species from the Pirquitas Ag-Sn deposit (Province Jujuy, NW-Argentina). It was observed in symmetrically banded veins in the Oploca district, and is associated with sphalerite, arsenopyrite, pyrite-marcasite, cassiterite, cylindrite, franckeite, hocartite, rhodostannite, and various Ag-Sb and Ag-Bi sulfosalts in minor amounts. Suredaite occurs in layers up to 1 cm in thickness as aggregates of radially arranged tabular-prismatic (single) crystals, has a metallic lustre, and a dark grey streak. VHN50 ranges between 18.2 and 20.6 (mean 19.6) GPa, the Mohs hardness is 2.5-3. It has perfect cleavages parallel to {001}, {101}, and {100}. The measured density varies between 5.54 and 5.88 g/cm3, Dx was determined to be 5.615 g/cm3. In reflected plane-polarised light, it is white and is not perceptibly bireflectant or pleochroic. It lacks internal reflections and is weakly anisotropic with metallic blue, mauve to brown rotation tints. Specular reflectance percentages in air and in oil are tabulated from 400 to 700 nm and compared graphically with those for the type specimen of teallite, PbSnS2. Electron microprobe analyses showed suredaite to be chemically inhomogeneous with respect to the compositional variations (in wt%): Pb 42.3- 48.5, Ag 0.3-1.1, Fe 0.3-1.0, As 0.2-2.1, Sn 27.7-30.2, S 23.1-24.7. The crystal structure determined from single-crystal X-ray diffraction data revealed orthorhombic symmetry [space group Pnma, Z = 4, a = 8.8221(3), b = 3.7728(3), c = 14.0076(3) Å; V = 466.23(4) Å3]. The atomic arrangement is isostructural to the NH4CdCl3 structure type which exists in a series of isotypic sulfides and selenide compounds. The suredaite structure, which is the natural analogue of synthetic PbSnS3, consists of columns of double-edge sharing octahedra running parallel to the b axis, which house the Sn atoms. These columns are linked by rods of eightfold-coordinated Pb atoms. On the basis of the structure determination, the empirically determined idealized formula follows a [8](Pb, As,Ag, Sn) [6](Sn,Fe)S3 stoichiometry. Crystalchemical arguments suggest Ag possibly to occupy interstitial sites according to the alternative formula [4](⃞,Ag) [8](Pb, As, Sn) [6](Sn,Fe) S3. The name of this new mineral species is in honor of R.J. Sureda Leston, head of the Department of Mineralogy and Economic Geology, University of Salta, Argentina.

Received: 1999-6-15
Accepted: 2000-2-24
Published Online: 2015-3-26
Published in Print: 2000-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer
  2. Volumes of mixing in aluminosilicate garnets: Solid solution and strain behavior
  3. Cerium anomaly and Th/U fractionation in the 1.85 Ga Flin Flon Paleosol: Clues from REE- and U-rich accessory minerals and implications for paleoatmospheric reconstruction
  4. Os solubility in silicate melts: New efforts and results
  5. Enstatite-forsterite-water equilibria at elevated temperatures and pressures
  6. The OH-F substitution in synthetic pargasite at 1.5 kbar, 850 °C
  7. Uptake of aqueous Pb by Cl-, F, and OH apatites: Mineralogic evidence for nucleation mechanisms
  8. Temperature dependence of the hyperfine parameters of synthetic P21/c Mg-Fe clinopyroxenes along the MgSiO3-FeSiO3 join
  9. Single-crystal thermometric calibration of Fe-Mg order-disorder in pigeonites
  10. TEM observations on the P1̄ -I1̄ phase transition in feldspars along the join CaAl2Si2O8-SrAl2Si2O8
  11. Phase transitions induced by solid solution in stuffed derivatives of quartz: A powder synchrotron XRD study of the LiAlSiO4-SiO2 join
  12. The transformation of andalusite to mullite and silica: Part I. Transformation mechanism in [001]A direction
  13. The transformation of andalusite to mullite and silica: Part II. Transformation mechanisms in [100]A and [010]A directions
  14. Structure and twinning of tetragonal Ca3Mn2Ge3O12 garnet
  15. The equation of state of lawsonite to 7 GPa and 873 K, and calculation of its high pressure stability
  16. Boron K-edge XANES of borate and borosilicate minerals
  17. 113Cd double-resonance NMR as a probe of clay mineral cation exchange sites
  18. Solid state NMR study of oxygen site exchange and Al-O-Al site concentration in analcime
  19. Isomorphous substitution effect on the vibration frequencies of hydroxyl groups in molecular cluster models of the clay octahedral sheet
  20. Molecular modeling of the structure and dynamics of the interlayer and surface species of mixed-metal layered hydroxides: Chloride and water in hydrocalumite (Friedel’s salt)
  21. VIII(Mg,Fe)0.85VI(Mg,Fe)4IV(Fe,Ge)3O12: A new tetragonal phase and its comparison with garnet
  22. Rietveld analysis of dicalcium aluminate (Ca2Al2O5) – A new high pressure phase with the Brownmillerite-type structure
  23. Suredaite, PbSnS3, a new mineral species, from the Pirquitas Ag-Sn deposit, NW-Argentina: mineralogy and crystal structure
  24. Kozoite-(Nd), Nd(CO3)(OH), a new mineral in an alkali olivine basalt from Hizen-cho, Saga Prefecture, Japan
  25. Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite
  26. Letters. Computer simulation of high-temperature, forsterite-melt partitioning
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2000-0723/html
Scroll to top button