Transient anisotropy in degenerate systems: A semi-classical approach
-
Oliver Schalk
Abstract
A semi-classical model for transient anisotropy in degenerate excited states is developed on the basis of a more general ansatz presented recently (O. Schalk and A.-N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010)). This is the first model that can treat both rotational dephasing and the dynamics in degenerate systems, which is a prerequisite for a comprehensive theory to describe gas phase anisotropy experiments in small, highly symmetric systems. In the present contribution, it is shown that this model covers most of the features of the full quantum dynamical treatment and helps to give insights into the physical processes that are underlying these dynamics.
© by Oldenbourg Wissenschaftsverlag, Karlsruhe, Germany
Artikel in diesem Heft
- Preface
- OH and NH Stretching Vibrational Relaxation of Liquid Ethanolamine
- Transient anisotropy in degenerate systems: A semi-classical approach
- First Cavity Ring-Down Spectroscopy HO2 Measurements in a Large Photoreactor
- Relaxation Dynamics of Electronically Excited C60− in o-Dichlorobenzene and Tetrahydrofuran Solution
- 3CH2 + O2: Kinetics and Product Channel Branching Ratios
- What Do We Know About the Iconic System CH3 + CH3 + M ↔ C2H6 + M?
- Thermochemistry and Kinetics for 2-Butanone-3yl Radical (CH3C(=O)CH•CH3) Reactions with O2
- Experimental and Modelling Study of the Unimolecular Thermal Decompostion of CHF3
- Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames
- Characterization of Rhodamine 6G Release in Electrospray Ionization by Means of Spatially Resolved Fluorescence Spectroscopy
- Femtosecond interferometry of molecular dynamics – the role of relative and absolute phase of two individual laser pulses
- Photodecarbonylation of Diphenylcyclopropenone – a Direct Pathway to Electronically Excited Diphenylacetylene?
- Yield of HO2 Radicals in the OH-Initiated Oxidation of SO2
- Pyrolysis of Ethyl Iodide as Hydrogen Atom Source: Kinetics and Mechanism in the Temperature Range 950–1200 K
- Reaction of OH and NO at Low Temperatures in the Presence of Water: the Role of Clusters
Artikel in diesem Heft
- Preface
- OH and NH Stretching Vibrational Relaxation of Liquid Ethanolamine
- Transient anisotropy in degenerate systems: A semi-classical approach
- First Cavity Ring-Down Spectroscopy HO2 Measurements in a Large Photoreactor
- Relaxation Dynamics of Electronically Excited C60− in o-Dichlorobenzene and Tetrahydrofuran Solution
- 3CH2 + O2: Kinetics and Product Channel Branching Ratios
- What Do We Know About the Iconic System CH3 + CH3 + M ↔ C2H6 + M?
- Thermochemistry and Kinetics for 2-Butanone-3yl Radical (CH3C(=O)CH•CH3) Reactions with O2
- Experimental and Modelling Study of the Unimolecular Thermal Decompostion of CHF3
- Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames
- Characterization of Rhodamine 6G Release in Electrospray Ionization by Means of Spatially Resolved Fluorescence Spectroscopy
- Femtosecond interferometry of molecular dynamics – the role of relative and absolute phase of two individual laser pulses
- Photodecarbonylation of Diphenylcyclopropenone – a Direct Pathway to Electronically Excited Diphenylacetylene?
- Yield of HO2 Radicals in the OH-Initiated Oxidation of SO2
- Pyrolysis of Ethyl Iodide as Hydrogen Atom Source: Kinetics and Mechanism in the Temperature Range 950–1200 K
- Reaction of OH and NO at Low Temperatures in the Presence of Water: the Role of Clusters